1
|
Hu Y, Zou Y, Qiao L, Lin L. Integrative proteomic and metabolomic elucidation of cardiomyopathy with in vivo and in vitro models and clinical samples. Mol Ther 2024; 32:3288-3312. [PMID: 39233439 PMCID: PMC11489546 DOI: 10.1016/j.ymthe.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/16/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Cardiomyopathy is a prevalent cardiovascular disease that affects individuals of all ages and can lead to life-threatening heart failure. Despite its variety in types, each with distinct characteristics and causes, our understanding of cardiomyopathy at a systematic biology level remains incomplete. Mass spectrometry-based techniques have emerged as powerful tools, providing a comprehensive view of the molecular landscape and aiding in the discovery of biomarkers and elucidation of mechanisms. This review highlights the significant potential of integrating proteomic and metabolomic approaches with specialized databases to identify biomarkers and therapeutic targets across different types of cardiomyopathies. In vivo and in vitro models, such as genetically modified mice, patient-derived or induced pluripotent stem cells, and organ chips, are invaluable in exploring the pathophysiological complexities of this disease. By integrating omics approaches with these sophisticated modeling systems, our comprehension of the molecular underpinnings of cardiomyopathy can be greatly enhanced, facilitating the development of diagnostic markers and therapeutic strategies. Among the promising therapeutic targets are those involved in extracellular matrix remodeling, sarcomere damage, and metabolic remodeling. These targets hold the potential to advance precision therapy in cardiomyopathy, offering hope for more effective treatments tailored to the specific molecular profiles of patients.
Collapse
Affiliation(s)
- Yiwei Hu
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China
| | - Yunzeng Zou
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| | - Liang Qiao
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| | - Ling Lin
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| |
Collapse
|
2
|
Chen P, Pang C, Bai L, Zhang Y, Dong P, Han H. Integrated metabolomics and network pharmacology study on the mechanism of herbal pair of danggui-kushen for treating ischemia heart disease. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1239:124121. [PMID: 38642410 DOI: 10.1016/j.jchromb.2024.124121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/13/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
DangGui-KuShen (DK) is a well-known classic traditional Chinese medicine recipe that improves blood circulation, eliminates moisture, and detoxifies, and is frequently used in the treatment of cardiovascular problems. Some protective effects of DK on cardiovascular disease have previously been identified, but its precise mechanism remains unknown. The goal of this study is to combine metabolomics and network pharmacology to investigate DK's protective mechanism in Ischemic Heart Disease(IHD) rat models. A combination of metabolomics and network pharmacology based on UPLC-Q-TOF/MS technology was used in this study to verify the effect of DK on IHD through enzyme-linked immunosorbent assay, HE staining, and electrocardiogram, and it was determined that DK improves the synergistic mechanism of IHD. In total, 22 serum differential metabolites and 26 urine differential metabolites were discovered, with the majority of them involved in phenylalanine, tyrosine, and tryptophan biosynthesis, glycine, serine, and threonine metabolism, arginine and proline metabolism, aminoacyl-tRNA biosynthesis, purine metabolism, and other metabolic pathways. Furthermore, using network pharmacology, a composite target pathway network of DangGui and KuShen for treating IHD was created, which is primarily associated to the tumor necrosis factor (TNF) signaling pathway, P53 signaling, and HIF-1 signaling pathways. The combined research indicated that the NF-B signaling pathway and the HIF-1 signaling pathway are critical in DK treatment of IHD. This study clearly confirms and expands on current knowledge of the synergistic effects of DG and KS in IHD.
Collapse
Affiliation(s)
- Pengyi Chen
- College of medicine, Heilongjiang University of traditional Chinese Medicine, Harbin, China
| | - Chengguo Pang
- College of medicine, Heilongjiang University of traditional Chinese Medicine, Harbin, China
| | - Lincheng Bai
- College of medicine, Heilongjiang University of traditional Chinese Medicine, Harbin, China
| | - Yulong Zhang
- College of medicine, Heilongjiang University of traditional Chinese Medicine, Harbin, China
| | - Peiliang Dong
- Institute of traditional Chinese medicine, Heilongjiang University of traditional Chinese Medicine, Harbin, China.
| | - Hua Han
- College of medicine, Heilongjiang University of traditional Chinese Medicine, Harbin, China.
| |
Collapse
|
3
|
Lippi M, Maione AS, Chiesa M, Perrucci GL, Iengo L, Sattin T, Cencioni C, Savoia M, Zeiher AM, Tundo F, Tondo C, Pompilio G, Sommariva E. Omics Analyses of Stromal Cells from ACM Patients Reveal Alterations in Chromatin Organization and Mitochondrial Homeostasis. Int J Mol Sci 2023; 24:10017. [PMID: 37373166 DOI: 10.3390/ijms241210017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder characterized by ventricular arrhythmias, contractile dysfunctions and fibro-adipose replacement of myocardium. Cardiac mesenchymal stromal cells (CMSCs) participate in disease pathogenesis by differentiating towards adipocytes and myofibroblasts. Some altered pathways in ACM are known, but many are yet to be discovered. We aimed to enrich the understanding of ACM pathogenesis by comparing epigenetic and gene expression profiles of ACM-CMSCs with healthy control (HC)-CMSCs. Methylome analysis identified 74 differentially methylated nucleotides, most of them located on the mitochondrial genome. Transcriptome analysis revealed 327 genes that were more expressed and 202 genes that were less expressed in ACM- vs. HC-CMSCs. Among these, genes implicated in mitochondrial respiration and in epithelial-to-mesenchymal transition were more expressed, and cell cycle genes were less expressed in ACM- vs. HC-CMSCs. Through enrichment and gene network analyses, we identified differentially regulated pathways, some of which never associated with ACM, including mitochondrial functioning and chromatin organization, both in line with methylome results. Functional validations confirmed that ACM-CMSCs exhibited higher amounts of active mitochondria and ROS production, a lower proliferation rate and a more pronounced epicardial-to-mesenchymal transition compared to the controls. In conclusion, ACM-CMSC-omics revealed some additional altered molecular pathways, relevant in disease pathogenesis, which may constitute novel targets for specific therapies.
Collapse
Affiliation(s)
- Melania Lippi
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Department of Medicine and Surgery, Università Degli Studi di Milano Bicocca, 20126 Milan, Italy
| | - Angela Serena Maione
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Mattia Chiesa
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, 20133 Milan, Italy
| | - Gianluca Lorenzo Perrucci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Lara Iengo
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Tommaso Sattin
- Department of Arrhythmology and Electrophysiology, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Chiara Cencioni
- Istituto di Analisi dei Sistemi ed Informatica "A. Ruberti", Consiglio Nazionale delle Ricerche (IASI-CNR), 00185 Rome, Italy
| | - Matteo Savoia
- Department of Medicine III, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Andreas M Zeiher
- Department of Medicine III, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Fabrizio Tundo
- Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Claudio Tondo
- Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| |
Collapse
|
4
|
Wang SJ, Liu BR, Zhang F, Li YP, Su XR, Yang CT, Cong B, Zhang ZH. Abnormal fatty acid metabolism and ceramide expression may discriminate myocardial infarction from strangulation death: A pilot study. Tissue Cell 2023; 80:101984. [PMID: 36434828 DOI: 10.1016/j.tice.2022.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Determining myocardial infarction (MI) and mechanical asphyxia (MA) was one of the most challenging tasks in forensic practice. The present study aimed to investigate the potential of fatty acid (FAs) metabolism, and lipid alterations in determining MI and MA. MA and MI mouse models were constructed, and metabolic profiles were obtained by LC-MS-based untargeted metabolomics. The metabolic alterations were explored using the PCA, OPLS-DA, the Wilcoxon test, and fold change analysis. The contents of lipid droplets (LDs) were detected by the transmission scanning electron microscope and Oil red O staining. The immunohistochemical assay was performed to detect CD36 and dysferlin. The ceramide was assessed by LC-MS. PCA showed considerable differences in the metabolite profiles, and the well-fitting OPLS-DA model was developed to screen differential metabolites. Thereinto, 9 metabolites in the MA were reduced, while metabolites were up- and down-regulated in MI. The increased CD36 suggested that MI and MA could enhance the intake of FAs and disturb energy metabolism. The increased LDs, decreased dysferlin, and increased ceramide (C18:0, C22:0, and C24:0) were observed in MI groups, confirming the lipid deposition. The present study indicated significant differences in myocardial FAs metabolism and lipid alterations between MI and MA, suggesting that FAs metabolism and related proteins, certain ceramide may harbor the potential as biomarkers for discrimination of MI and MA.
Collapse
Affiliation(s)
- Song-Jun Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China.
| | - Bing-Rui Liu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China.
| | - Fu Zhang
- Forensic Pathology Lab, Guangdong Public Security Department, China.
| | - Ya-Ping Li
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China.
| | - Xiao-Rui Su
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China.
| | - Chen-Teng Yang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China.
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China.
| | - Zhi-Hua Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China; HeBei Chest Hospital, China.
| |
Collapse
|
5
|
Gaar-Humphreys KR, van den Brink A, Wekking M, Asselbergs FW, van Steenbeek FG, Harakalova M, Pei J. Targeting lipid metabolism as a new therapeutic strategy for inherited cardiomyopathies. Front Cardiovasc Med 2023; 10:1114459. [PMID: 36760574 PMCID: PMC9907444 DOI: 10.3389/fcvm.2023.1114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Inherited cardiomyopathies caused by pathological genetic variants include multiple subtypes of heart disease. Advances in next-generation sequencing (NGS) techniques have allowed for the identification of numerous genetic variants as pathological variants. However, the disease penetrance varies among mutated genes. Some can be associated with more than one disease subtype, leading to a complex genotype-phenotype relationship in inherited cardiomyopathies. Previous studies have demonstrated disrupted metabolism in inherited cardiomyopathies and the importance of metabolic adaptations in disease onset and progression. In addition, genotype- and phenotype-specific metabolic alterations, especially in lipid metabolism, have been revealed. In this mini-review, we describe the metabolic changes that are associated with dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), which account for the largest proportion of inherited cardiomyopathies. We also summarize the affected expression of genes involved in fatty acid oxidation (FAO) in DCM and HCM, highlighting the potential of PPARA-targeting drugs as FAO modulators in treating patients with inherited cardiomyopathies.
Collapse
Affiliation(s)
- Karen R. Gaar-Humphreys
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Alyssa van den Brink
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mark Wekking
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Folkert W. Asselbergs
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Health Data Research United Kingdom and Institute of Health Informatics, University College London, London, United Kingdom
| | - Frank G. van Steenbeek
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Magdalena Harakalova
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
| | - Jiayi Pei
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
| |
Collapse
|
6
|
Reactivation of PPAR α alleviates myocardial lipid accumulation and cardiac dysfunction by improving fatty acid β-oxidation in Dsg2-deficient arrhythmogenic cardiomyopathy. Acta Pharm Sin B 2023; 13:192-203. [PMID: 36815030 PMCID: PMC9939300 DOI: 10.1016/j.apsb.2022.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM), a fatal heart disease characterized by fibroadipocytic replacement of cardiac myocytes, accounts for 20% of sudden cardiac death and lacks effective treatment. It is often caused by mutations in desmosome proteins, with Desmoglein-2 (DSG2) mutations as a common etiology. However, the mechanism underlying the accumulation of fibrofatty in ACM remains unknown, which impedes the development of curative treatment. Here we investigated the fat accumulation and the underlying mechanism in a mouse model of ACM induced by cardiac-specific knockout of Dsg2 (CS-Dsg2 -/-). Heart failure and cardiac lipid accumulation were observed in CS-Dsg2 -/- mice. We demonstrated that these phenotypes were caused by decline of fatty acid (FA) β-oxidation resulted from impaired mammalian target of rapamycin (mTOR) signaling. Rapamycin worsened while overexpression of mTOR and 4EBP1 rescued the FA β-oxidation pathway in CS-Dsg2 -/- mice. Reactivation of PPARα by fenofibrate or AAV9-Pparα significantly alleviated the lipid accumulation and restored cardiac function. Our results suggest that impaired mTOR-4EBP1-PPARα-dependent FA β-oxidation contributes to myocardial lipid accumulation in ACM and PPARα may be a potential target for curative treatment of ACM.
Collapse
|