1
|
Jin C, Xue L, Zhang L, Yu L, Wu P, Qian H. Engineered Nanoparticles for Theranostic Applications in Kidney Repair. Adv Healthc Mater 2025; 14:e2402480. [PMID: 39617999 DOI: 10.1002/adhm.202402480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/05/2024] [Indexed: 01/03/2025]
Abstract
Kidney diseases are characterized by their intricate nature and complexity, posing significant challenges in their treatment and diagnosis. Nanoparticles (NPs), which can be further classified as synthetic and biomimetic NPs, have emerged as promising candidates for treating various diseases. In recent years, the development of engineered nanotherapeutics has focused on targeting damaged tissues and serving as drug delivery vehicles. Additionally, these NPs have shown superior sensitivity and specificity in diagnosis and imaging, thus providing valuable insights for the early detection of diseases. This review aims to focus on the application of engineered synthetic and biomimetic NPs in kidney diseases in the aspects of treatment, diagnosis, and imaging. Notably, the current perspectives and challenges are evaluated, which provide inspiration for future research directions, and encourage the clinical application of NPs in this field.
Collapse
Affiliation(s)
- Can Jin
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lingling Xue
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Leilei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lixia Yu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Peipei Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
2
|
Shi L, Zeng H, An Z, Chen W, Shan Y, Ji C, Qian H. Extracellular vesicles: Illuminating renal pathophysiology and therapeutic frontiers. Eur J Pharmacol 2024; 978:176720. [PMID: 38880217 DOI: 10.1016/j.ejphar.2024.176720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
Extracellular vesicles (EVs) are minute sacs released by cells into the extracellular milieu, harboring an array of biomolecules including proteins, nucleic acids, and lipids. Notably, a large number of studies have demonstrated the important involvement of EVs in both physiological and pathological aspects of renal function. EVs can facilitate communication between different renal cells, but it is important to recognize their dual role: they can either transmit beneficial information or lead to renal damage and worsening of existing conditions. The composition of EVs in the context of the kidneys offers valuable insights into the intricate mechanisms underlying specific renal functions or disease states. In addition, mesenchymal stem cell-derived EVs have the potential to alleviate acute and chronic kidney diseases. More importantly, the innate nanoparticle properties of EVs, coupled with their engineering potential, make them effective tools for drug delivery and therapeutic intervention. In this review, we focus on the intricate biological functions of EVs in the kidney. In addition, we explore the emerging role of EVs as diagnostic tools and innovative therapeutic agents in a range of renal diseases.
Collapse
Affiliation(s)
- Linru Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Houcheng Zeng
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhongwu An
- Department of Laboratory, Lianyungang Oriental Hospital, Lianyungang, 222042, Jiangsu, China
| | - Wenya Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yunjie Shan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
3
|
Wolf B, Blaschke CRK, Mungaray S, Weselman BT, Stefanenko M, Fedoriuk M, Bai H, Rodgers J, Palygin O, Drake RR, Nowling TK. Metabolic Markers and Association of Biological Sex in Lupus Nephritis. Int J Mol Sci 2023; 24:16490. [PMID: 38003679 PMCID: PMC10671813 DOI: 10.3390/ijms242216490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Lupus nephritis (LN) is a serious complication for many patients who develop systemic lupus erythematosus, which primarily afflicts women. Our studies to identify biomarkers and the pathogenic mechanisms underlying LN will provide a better understanding of disease progression and sex bias, and lead to identification of additional potential therapeutic targets. The glycosphingolipid lactosylceramide (LacCer) and N-linked glycosylated proteins (N-glycans) were measured in urine and serum collected from LN and healthy control (HC) subjects (10 females and 10 males in each group). The sera from the LN and HC subjects were used to stimulate cytokine secretion and intracellular Ca2+ flux in female- and male-derived primary human renal mesangial cells (hRMCs). Significant differences were observed in the urine of LN patients compared to HCs. All major LacCers species were significantly elevated and differences between LN and HC were more pronounced in males. 72 individual N-glycans were altered in LN compared to HC and three N-glycans were significantly different between the sexes. In hRMCs, Ca2+ flux, but not cytokine secretion, was higher in response to LN sera compared to HC sera. Ca2+ flux, cytokine secretion, and glycosphingolipid levels were significantly higher in female-derived compared to male-derived hRMCs. Relative abundance of some LacCers and hexosylceramides were higher in female-derived compared to male-derived hRMCs. Urine LacCers and N-glycome could serve as definitive LN biomarkers and likely reflect renal disease activity. Despite higher sensitivity of female hRMCs, males may experience greater increases in LacCers, which may underscore worse disease in males. Elevated glycosphingolipid metabolism may poise renal cells to be more sensitive to external stimuli.
Collapse
Affiliation(s)
- Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, SC 29425, USA;
| | - Calvin R. K. Blaschke
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue Basic Science Building 358, Charleston, SC 29425, USA (B.T.W.); (H.B.); (R.R.D.)
| | - Sandy Mungaray
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA; (S.M.); (J.R.)
| | - Bryan T. Weselman
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue Basic Science Building 358, Charleston, SC 29425, USA (B.T.W.); (H.B.); (R.R.D.)
| | - Mariia Stefanenko
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Clinical Sciences Building, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (M.S.); (M.F.); (O.P.)
| | - Mykhailo Fedoriuk
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Clinical Sciences Building, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (M.S.); (M.F.); (O.P.)
| | - Hongxia Bai
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue Basic Science Building 358, Charleston, SC 29425, USA (B.T.W.); (H.B.); (R.R.D.)
| | - Jessalyn Rodgers
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA; (S.M.); (J.R.)
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Clinical Sciences Building, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (M.S.); (M.F.); (O.P.)
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue Basic Science Building 358, Charleston, SC 29425, USA (B.T.W.); (H.B.); (R.R.D.)
| | - Tamara K. Nowling
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA; (S.M.); (J.R.)
| |
Collapse
|
4
|
Nie H, Chang S, Li Y, Li F. Biomarkers Associated with Drugs for the Treatment of Lupus Nephritis. Biomolecules 2023; 13:1601. [PMID: 38002282 PMCID: PMC10669579 DOI: 10.3390/biom13111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The constant updating of lupus drug treatment guidelines has led to a question. How can the efficacy of treatment be more effectively monitored? Systemic lupus erythematosus (SLE) is a complex autoimmune disease that often presents clinically with multi-organ involvement, and approximately 30% of patients with SLE develop lupus nephritis (LN). Therefore, it is important to better track disease progression and drug efficacy. Now, kidney biopsy is still the gold standard for diagnosing and guiding the treatment of LN, but it is invasive and expensive. If simple, non-invasive and effective biomarkers can be found, drug intervention and prognosis can be better monitored and targeted. In this review, we focus on LN and explore biomarkers related to LN therapeutics, providing clinicians with more possibilities to track the therapeutic effect of drugs, improve treatment options and assess patient outcomes.
Collapse
Affiliation(s)
- Huiyu Nie
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Siyuan Chang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yuanyuan Li
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Fen Li
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, Changsha 410011, China
| |
Collapse
|
5
|
Vrablova V, Kosutova N, Blsakova A, Bertokova A, Kasak P, Bertok T, Tkac J. Glycosylation in extracellular vesicles: Isolation, characterization, composition, analysis and clinical applications. Biotechnol Adv 2023; 67:108196. [PMID: 37307942 DOI: 10.1016/j.biotechadv.2023.108196] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
This review provides a comprehensive overview of our understanding of the role that glycans play in the formation, loading and release of extracellular vesicles (EVs). The capture of EVs (typically with a size of 100-200 nm) is described, including approaches based on glycan recognition with glycan-based analysis offering highly sensitive detection of EVs. Furthermore, detailed information is provided about the use of EV glycans and glycan processing enzymes as potential biomarkers, therapeutic targets or tools applied for regenerative medicine. The review also provides a short introduction into advanced methods for the characterization of EVs, new insights into the biomolecular corona covering EVs and bioanalytical tools available for glycan analysis.
Collapse
Affiliation(s)
- Veronika Vrablova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Natalia Kosutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Anna Blsakova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Aniko Bertokova
- Glycanostics sro., Kudlakova 7, Bratislava 841 01, Slovak Republic
| | - Peter Kasak
- Centre for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic; Glycanostics sro., Kudlakova 7, Bratislava 841 01, Slovak Republic
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic; Glycanostics sro., Kudlakova 7, Bratislava 841 01, Slovak Republic.
| |
Collapse
|
6
|
Lu W, Zhong Y, Weng C, Wang Q, Tang M, Liu Z, Xue L. Utility of the ACR-1997, SLICC-2012 and EULAR/ACR-2019 classification criteria for systemic lupus erythematosus: a single-centre retrospective study. Lupus Sci Med 2022. [PMCID: PMC9462103 DOI: 10.1136/lupus-2022-000718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and aims Several different versions of classification criteria, including the American College of Rheumatology (ACR)-1997, Systemic Lupus International Collaborating Clinics (SLICC)-2012 and European Alliance of Associations for Rheumatology (EULAR)/ACR-2019 classification criteria, have been launched in the past decades. The current study aimed to investigate the performance of these three classification criteria for diagnosing patients with SLE in a Chinese cohort. Methods 352 patients with SLE and 385 controls with other diseases who had the detection results of ANA were enrolled into the study. Various clinical parameters were estimated, such as demographics variables, clinical characteristics and other variables related to three criteria. Results The current study demonstrated great diagnostic ability of the three criteria; and the receiver operating characteristic curve and the area under curve (AUC) were used to evaluate the diagnostic ability of three criteria: ACR-1997 (AUC=0.972), SLICC-2012 (AUC=0.986) and EULAR/ACR-2019 (AUC=0.983). Despite lower specificity of the SLICC-2012 and EULAR/ACR-2019 classification criteria, their sensitivity is significantly improved than ACR-1997. Of note, we also compared the median time interval between the appearance of the earliest item and fulfilment of the three sets of criteria, suggesting the SLICC-2012 and EULAR/ACR-2019 could achieve earlier diagnosis. Adjusting the thresholds of the EULAR/ACR-2019 criteria from 10 to 12, the specificity and accuracy significantly increased. Conclusion The SLICC-2012 and EULAR/ACR-2019 performed well in Chinese patients with SLE and showed better early diagnosis ability. In addition, by adjusting the classification threshold, the accuracy of the EULAR/ACR-2019 classification criteria was improved.
Collapse
Affiliation(s)
- Wentian Lu
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Zhong
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenghua Weng
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qing Wang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mei Tang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhichun Liu
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Leixi Xue
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|