1
|
Pannkuk EL, Laiakis EC, Garty G, Bansal S, Jayatilake MM, Tan Y, Ponnaiya B, Wu X, Amundson SA, Brenner DJ, Fornace AJ. Impact of Partial Body Shielding from Very High Dose Rates on Untargeted Metabolomics in Biodosimetry. ACS OMEGA 2024; 9:35182-35196. [PMID: 39157112 PMCID: PMC11325421 DOI: 10.1021/acsomega.4c05688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
A realistic exposure to ionizing radiation (IR) from an improvised nuclear device will likely include individuals who are partially shielded from the initial blast delivered at a very high dose rate (VHDR). As different tissues have varying levels of radiosensitivity, e.g., hematopoietic vs gastrointestinal tissues, the effects of shielding on radiation biomarkers need to be addressed. Here, we explore how biofluid (urine and serum) metabolite signatures from male and female C57BL/6 mice exposed to VHDR (5-10 Gy/s) total body irradiation (TBI, 0, 4, and 8 Gy) compare to individuals exposed to partial body irradiation (PBI) (lower body irradiated [LBI] or upper body irradiated [UBI] at an 8 Gy dose) using a data-independent acquisition untargeted metabolomics approach. Although sex differences were observed in the spatial groupings of urine signatures from TBI and PBI mice, a metabolite signature (N6,N6,N6-trimethyllysine, carnitine, propionylcarnitine, hexosamine-valine-isoleucine, taurine, and creatine) previously developed from variable dose rate experiments was able to identify individuals with high sensitivity and specificity, irrespective of radiation shielding. A panel of serum metabolites composed from previous untargeted studies on nonhuman primates had excellent performance for separating irradiated cohorts; however, a multiomic approach to complement the metabolome could increase dose estimation confidence intervals. Overall, these results support the inclusion of small-molecule markers in biodosimetry assays without substantial interference from the upper or lower body shielding.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Department
of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Center
for Metabolomic Studies, Georgetown University, Washington, District of
Columbia 20057, United States
| | - Evagelia C. Laiakis
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Department
of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Center
for Metabolomic Studies, Georgetown University, Washington, District of
Columbia 20057, United States
- Department
of Radiation Medicine, Georgetown University
Hospital, Washington, District of Columbia 20057, United States
| | - Guy Garty
- Radiological
Research Accelerator Facility, Columbia
University, Irvington, New York 10533, United States
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Sunil Bansal
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
| | - Meth M. Jayatilake
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
| | - Yuewen Tan
- Radiological
Research Accelerator Facility, Columbia
University, Irvington, New York 10533, United States
| | - Brian Ponnaiya
- Radiological
Research Accelerator Facility, Columbia
University, Irvington, New York 10533, United States
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Xuefeng Wu
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Sally A. Amundson
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - David J. Brenner
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Albert J. Fornace
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Department
of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Center
for Metabolomic Studies, Georgetown University, Washington, District of
Columbia 20057, United States
- Department
of Radiation Medicine, Georgetown University
Hospital, Washington, District of Columbia 20057, United States
| |
Collapse
|
2
|
Ancel P, Martin JC, Doukbi E, Houssays M, Gascon P, Righini M, Matonti F, Svilar L, Valmori M, Tardivel C, Venteclef N, Julla JB, Gautier JF, Resseguier N, Dutour A, Gaborit B. Untargeted Multiomics Approach Coupling Lipidomics and Metabolomics Profiling Reveals New Insights in Diabetic Retinopathy. Int J Mol Sci 2023; 24:12053. [PMID: 37569425 PMCID: PMC10418671 DOI: 10.3390/ijms241512053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus (DM) which is the main cause of vision loss in the working-age population. Currently known risk factors such as age, disease duration, and hemoglobin A1c lack sufficient efficiency to distinguish patients with early stages of DR. A total of 194 plasma samples were collected from patients with type 2 DM and DR (moderate to proliferative (PDR) or control (no or mild DR) matched for age, gender, diabetes duration, HbA1c, and hypertension. Untargeted lipidomic and metabolomic approaches were performed. Partial-least square methods were used to analyze the datasets. Levels of 69 metabolites and 85 lipid species were found to be significantly different in the plasma of DR patients versus controls. Metabolite set enrichment analysis indicated that pathways such as metabolism of branched-chain amino acids (methylglutaryl carnitine p = 0.004), the kynurenine pathway (tryptophan p < 0.001), and microbiota metabolism (p-Cresol sulfate p = 0.004) were among the most enriched deregulated pathways in the DR group. Moreover, Glucose-6-phosphate (p = 0.001) and N-methyl-glutamate (p < 0.001) were upregulated in DR. Subgroup analyses identified a specific signature associated with PDR, macular oedema, and DR associated with chronic kidney disease. Phosphatidylcholines (PCs) were dysregulated, with an increase of alkyl-PCs (PC O-42:5 p < 0.001) in DR, while non-ether PCs (PC 14:0-16:1, p < 0.001; PC 18:2-14:0, p < 0.001) were decreased in the DR group. Through an unbiased multiomics approach, we identified metabolites and lipid species that interestingly discriminate patients with or without DR. These features could be a research basis to identify new potential plasma biomarkers to promote 3P medicine.
Collapse
Affiliation(s)
- Patricia Ancel
- Aix-Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France; (P.A.); (E.D.)
| | - Jean Charles Martin
- Aix-Marseille University, INSERM, INRAE, C2VN, BIOMET Aix-Marseille Technology Platform, 13005 Marseille, France; (J.C.M.); (M.V.); (C.T.)
| | - Elisa Doukbi
- Aix-Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France; (P.A.); (E.D.)
| | - Marie Houssays
- Medical Evaluation Department, Assistance-Publique Hôpitaux de Marseille, CIC-CPCET, 13005 Marseille, France
| | - Pierre Gascon
- Department of Ophthalmology, Assistance-Publique Hôpitaux de Marseille, 13005 Marseille, France; (P.G.); (M.R.); (F.M.)
- Centre Monticelli Paradis, 433 bis rue Paradis, 13008 Marseille, France
- Groupe Almaviva Santé, Clinique Juge, 116 rue Jean Mermoz, 13008 Marseille, France
| | - Maud Righini
- Department of Ophthalmology, Assistance-Publique Hôpitaux de Marseille, 13005 Marseille, France; (P.G.); (M.R.); (F.M.)
| | - Frédéric Matonti
- Department of Ophthalmology, Assistance-Publique Hôpitaux de Marseille, 13005 Marseille, France; (P.G.); (M.R.); (F.M.)
| | - Ljubica Svilar
- CRIBIOM Aix-Marseille Technology Platform, 13005 Marseille, France;
| | - Marie Valmori
- Aix-Marseille University, INSERM, INRAE, C2VN, BIOMET Aix-Marseille Technology Platform, 13005 Marseille, France; (J.C.M.); (M.V.); (C.T.)
| | - Catherine Tardivel
- Aix-Marseille University, INSERM, INRAE, C2VN, BIOMET Aix-Marseille Technology Platform, 13005 Marseille, France; (J.C.M.); (M.V.); (C.T.)
| | - Nicolas Venteclef
- IMMEDIAB Laboratory, Institut Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, Université Paris Cité, 75015 Paris, France;
| | - Jean Baptiste Julla
- IMMEDIAB Laboratory, Diabetology and Endocrinology Department, Institut Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, Université Paris Cité, Lariboisière Hospital, Féderation de Diabétologie, APHP, 75015 Paris, France; (J.B.J.); (J.F.G.)
| | - Jean François Gautier
- IMMEDIAB Laboratory, Diabetology and Endocrinology Department, Institut Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, Université Paris Cité, Lariboisière Hospital, Féderation de Diabétologie, APHP, 75015 Paris, France; (J.B.J.); (J.F.G.)
| | - Noémie Resseguier
- Aix-Marseille University, Support Unit for Clinical Research and Economic Evaluation, Assistance Publique-Hôpitaux de Marseille, EA 3279 CEReSS-Health Service Research and Quality of Life Center, 13005 Marseille, France;
| | - Anne Dutour
- Aix-Marseille University, INSERM, INRAE, C2VN, Endocrinology, Metabolic Diseases and Nutrition Department, AP-HM, 13005 Marseille, France;
| | - Bénédicte Gaborit
- Aix-Marseille University, INSERM, INRAE, C2VN, Endocrinology, Metabolic Diseases and Nutrition Department, AP-HM, 13005 Marseille, France;
| |
Collapse
|
3
|
Grison S, Legendre A, Svilar L, Elie C, Kereselidze D, Gloaguen C, Lestaevel P, Martin JC, Souidi M. Multigenerational Exposure to Uranium Changes Sperm Metabolome in Rats. Int J Mol Sci 2022; 23:8349. [PMID: 35955476 PMCID: PMC9369047 DOI: 10.3390/ijms23158349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Male infertility is a major public health issue that can be induced by a host of lifestyle risk factors such as environment, nutrition, smoking, stress, and endocrine disruptors. Regarding the human population exposed to uranium, it is necessary to explore these effects on male reproduction in multigenerational studies. The sensitivity of mass spectrometry (MS)-based methods has already proved to be extremely useful in metabolite identification in rats exposed to low doses of uranium, but also in human sperm. We applied this method to rat sperm over three generations (F0, F1 and F2) with multigenerational uranium exposure. Our results show a significant content of uranium in generation F0, and a reduction in the pregnancy rate only in generation F1. Based on principal component analysis (PCA), we observed discriminant profiles between generations. The partial least squares discriminant analysis (PLS-DA) of the 48 annotated variables confirmed that parental exposure of generation F0 (during both the preconceptional and prenatal periods) can have metabolic effects on spermatozoa for the next two generations. Metabolomics applied to epididymal spermatozoa is a novel approach to detecting the multigenerational effects of uranium in an experimental model, but could be also recommended to identify potential biomarkers evaluating the impact of uranium on sperm in exposed infertile men.
Collapse
Affiliation(s)
- Stéphane Grison
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE, 92260 Fontenay-aux-Roses, France; (A.L.); (C.E.); (D.K.); (C.G.); (P.L.); (M.S.)
| | - Audrey Legendre
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE, 92260 Fontenay-aux-Roses, France; (A.L.); (C.E.); (D.K.); (C.G.); (P.L.); (M.S.)
| | - Ljubica Svilar
- C2VN, CRIBIOM, Aix Marseille Université, 13007 Marseille, France;
| | - Christelle Elie
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE, 92260 Fontenay-aux-Roses, France; (A.L.); (C.E.); (D.K.); (C.G.); (P.L.); (M.S.)
| | - Dimitri Kereselidze
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE, 92260 Fontenay-aux-Roses, France; (A.L.); (C.E.); (D.K.); (C.G.); (P.L.); (M.S.)
| | - Céline Gloaguen
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE, 92260 Fontenay-aux-Roses, France; (A.L.); (C.E.); (D.K.); (C.G.); (P.L.); (M.S.)
| | - Philippe Lestaevel
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE, 92260 Fontenay-aux-Roses, France; (A.L.); (C.E.); (D.K.); (C.G.); (P.L.); (M.S.)
| | - Jean-Charles Martin
- C2VN, INRAE, INSERM, BIOMET, Aix Marseille Université, 13007 Marseille, France;
| | - Maâmar Souidi
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE, 92260 Fontenay-aux-Roses, France; (A.L.); (C.E.); (D.K.); (C.G.); (P.L.); (M.S.)
| |
Collapse
|