1
|
Lee S, Kelly RS, Mendez KM, Prokopenko D, Hahn G, Lutz SM, Celedón JC, Clish CB, Weiss ST, Lange C, Lasky-Su JA, Hecker J. On the analysis of metabolite quantitative trait loci: Impact of different data transformations and study designs. SCIENCE ADVANCES 2025; 11:eadp4532. [PMID: 40215300 PMCID: PMC11988406 DOI: 10.1126/sciadv.adp4532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 03/12/2025] [Indexed: 04/14/2025]
Abstract
Metabolomic genome-wide association studies (mGWASs), or metabolomic quantitative trait locus (metQTL) analyses, are gaining growing attention. However, robust methods and analysis guidelines, vital to address the complexity of metabolomic data, remain to be established. Here, we use whole-genome sequencing and metabolomic data from two independent studies to compare different approaches. We adopted three popular data transformation methods for metabolite levels-(i) log10 transformation, (ii) rank inverse normal transformation, and (iii) a fully adjusted two-step procedure-and compared population-based versus family-based analysis approaches. For validation, we performed permutation-based testing, Huber regression, and independent replication analysis. Simulation studies were used to illustrate the observed differences between data transformations. We demonstrate the advantages and limitations of popular analytic strategies used in mGWASs where especially low-frequency variants in combination with a skewed metabolite measurement distribution can lead to potentially false-positive metQTL findings. We recommend the rank inverse normal transformation or robust test statistics such as in family-based association tests as reliable approaches for mGWASs.
Collapse
Affiliation(s)
- Sanghun Lee
- Department of Medical Consilience, Division of Medicine, Graduate School, Dankook University, Yongin-si, South Korea
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rachel S. Kelly
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin M. Mendez
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dmitry Prokopenko
- Genetics and Aging Research Unit and the McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Georg Hahn
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sharon M. Lutz
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Healthcare Institute, Boston, MA, USA
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Clary B. Clish
- Metabolomics Platform, Broad Institute, Cambridge, MA, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Christoph Lange
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jessica A. Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
2
|
Nguyen QH, Nguyen H, Oh EC, Nguyen T. Current approaches and outstanding challenges of functional annotation of metabolites: a comprehensive review. Brief Bioinform 2024; 25:bbae498. [PMID: 39397425 PMCID: PMC11471905 DOI: 10.1093/bib/bbae498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Metabolite profiling is a powerful approach for the clinical diagnosis of complex diseases, ranging from cardiometabolic diseases, cancer, and cognitive disorders to respiratory pathologies and conditions that involve dysregulated metabolism. Because of the importance of systems-level interpretation, many methods have been developed to identify biologically significant pathways using metabolomics data. In this review, we first describe a complete metabolomics workflow (sample preparation, data acquisition, pre-processing, downstream analysis, etc.). We then comprehensively review 24 approaches capable of performing functional analysis, including those that combine metabolomics data with other types of data to investigate the disease-relevant changes at multiple omics layers. We discuss their availability, implementation, capability for pre-processing and quality control, supported omics types, embedded databases, pathway analysis methodologies, and integration techniques. We also provide a rating and evaluation of each software, focusing on their key technique, software accessibility, documentation, and user-friendliness. Following our guideline, life scientists can easily choose a suitable method depending on method rating, available data, input format, and method category. More importantly, we highlight outstanding challenges and potential solutions that need to be addressed by future research. To further assist users in executing the reviewed methods, we provide wrappers of the software packages at https://github.com/tinnlab/metabolite-pathway-review-docker.
Collapse
Affiliation(s)
- Quang-Huy Nguyen
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849, United States
| | - Ha Nguyen
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849, United States
| | - Edwin C Oh
- Department of Internal Medicine, UNLV School of Medicine, University of Nevada, Las Vegas, NV 89154, United States
| | - Tin Nguyen
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849, United States
| |
Collapse
|
3
|
Matsuoka T, Yashiro M. Bioinformatics Analysis and Validation of Potential Markers Associated with Prediction and Prognosis of Gastric Cancer. Int J Mol Sci 2024; 25:5880. [PMID: 38892067 PMCID: PMC11172243 DOI: 10.3390/ijms25115880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Gastric cancer (GC) is one of the most common cancers worldwide. Most patients are diagnosed at the progressive stage of the disease, and current anticancer drug advancements are still lacking. Therefore, it is crucial to find relevant biomarkers with the accurate prediction of prognoses and good predictive accuracy to select appropriate patients with GC. Recent advances in molecular profiling technologies, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, have enabled the approach of GC biology at multiple levels of omics interaction networks. Systemic biological analyses, such as computational inference of "big data" and advanced bioinformatic approaches, are emerging to identify the key molecular biomarkers of GC, which would benefit targeted therapies. This review summarizes the current status of how bioinformatics analysis contributes to biomarker discovery for prognosis and prediction of therapeutic efficacy in GC based on a search of the medical literature. We highlight emerging individual multi-omics datasets, such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics, for validating putative markers. Finally, we discuss the current challenges and future perspectives to integrate multi-omics analysis for improving biomarker implementation. The practical integration of bioinformatics analysis and multi-omics datasets under complementary computational analysis is having a great impact on the search for predictive and prognostic biomarkers and may lead to an important revolution in treatment.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan;
- Institute of Medical Genetics, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan
| | - Masakazu Yashiro
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan;
- Institute of Medical Genetics, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan
| |
Collapse
|
4
|
Pang Z, Xu L, Viau C, Lu Y, Salavati R, Basu N, Xia J. MetaboAnalystR 4.0: a unified LC-MS workflow for global metabolomics. Nat Commun 2024; 15:3675. [PMID: 38693118 PMCID: PMC11063062 DOI: 10.1038/s41467-024-48009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
The wide applications of liquid chromatography - mass spectrometry (LC-MS) in untargeted metabolomics demand an easy-to-use, comprehensive computational workflow to support efficient and reproducible data analysis. However, current tools were primarily developed to perform specific tasks in LC-MS based metabolomics data analysis. Here we introduce MetaboAnalystR 4.0 as a streamlined pipeline covering raw spectra processing, compound identification, statistical analysis, and functional interpretation. The key features of MetaboAnalystR 4.0 includes an auto-optimized feature detection and quantification algorithm for LC-MS1 spectra processing, efficient MS2 spectra deconvolution and compound identification for data-dependent or data-independent acquisition, and more accurate functional interpretation through integrated spectral annotation. Comprehensive validation studies using LC-MS1 and MS2 spectra obtained from standards mixtures, dilution series and clinical metabolomics samples have shown its excellent performance across a wide range of common tasks such as peak picking, spectral deconvolution, and compound identification with good computing efficiency. Together with its existing statistical analysis utilities, MetaboAnalystR 4.0 represents a significant step toward a unified, end-to-end workflow for LC-MS based global metabolomics in the open-source R environment.
Collapse
Affiliation(s)
- Zhiqiang Pang
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Lei Xu
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Charles Viau
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Yao Lu
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Reza Salavati
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Jianguo Xia
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada.
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Baron C, Cherkaoui S, Therrien-Laperriere S, Ilboudo Y, Poujol R, Mehanna P, Garrett ME, Telen MJ, Ashley-Koch AE, Bartolucci P, Rioux JD, Lettre G, Rosiers CD, Ruiz M, Hussin JG. Gene-metabolite annotation with shortest reactional distance enhances metabolite genome-wide association studies results. iScience 2023; 26:108473. [PMID: 38077122 PMCID: PMC10709128 DOI: 10.1016/j.isci.2023.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/24/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Metabolite genome-wide association studies (mGWAS) have advanced our understanding of the genetic control of metabolite levels. However, interpreting these associations remains challenging due to a lack of tools to annotate gene-metabolite pairs beyond the use of conservative statistical significance threshold. Here, we introduce the shortest reactional distance (SRD) metric, drawing from the comprehensive KEGG database, to enhance the biological interpretation of mGWAS results. We applied this approach to three independent mGWAS, including a case study on sickle cell disease patients. Our analysis reveals an enrichment of small SRD values in reported mGWAS pairs, with SRD values significantly correlating with mGWAS p values, even beyond the standard conservative thresholds. We demonstrate the utility of SRD annotation in identifying potential false negatives and inaccuracies within current metabolic pathway databases. Our findings highlight the SRD metric as an objective, quantitative and easy-to-compute annotation for gene-metabolite pairs, suitable to integrate statistical evidence to biological networks.
Collapse
Affiliation(s)
- Cantin Baron
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- Montreal Heart Institute, Montréal, QC, Canada
| | - Sarah Cherkaoui
- Montreal Heart Institute, Montréal, QC, Canada
- Division of Oncology and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
| | | | - Yann Ilboudo
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- Montreal Heart Institute, Montréal, QC, Canada
| | | | | | - Melanie E. Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Marilyn J. Telen
- Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | - Pablo Bartolucci
- Université Paris Est Créteil, Hôpitaux Universitaires Henri Mondor, APHP, Sickle cell referral center – UMGGR, Créteil, France
- Université Paris Est Créteil, IMRB, Laboratory of excellence LABEX, Créteil, France
| | - John D. Rioux
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- Montreal Heart Institute, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Christine Des Rosiers
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- Montreal Heart Institute, Montréal, QC, Canada
- Département de Nutrition, Université de Montréal, Montréal, QC, Canada
| | - Matthieu Ruiz
- Montreal Heart Institute, Montréal, QC, Canada
- Département de Nutrition, Université de Montréal, Montréal, QC, Canada
| | - Julie G. Hussin
- Montreal Heart Institute, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
6
|
Fuller H, Zhu Y, Nicholas J, Chatelaine HA, Drzymalla EM, Sarvestani AK, Julián-Serrano S, Tahir UA, Sinnott-Armstrong N, Raffield LM, Rahnavard A, Hua X, Shutta KH, Darst BF. Metabolomic epidemiology offers insights into disease aetiology. Nat Metab 2023; 5:1656-1672. [PMID: 37872285 PMCID: PMC11164316 DOI: 10.1038/s42255-023-00903-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/06/2023] [Indexed: 10/25/2023]
Abstract
Metabolomic epidemiology is the high-throughput study of the relationship between metabolites and health-related traits. This emerging and rapidly growing field has improved our understanding of disease aetiology and contributed to advances in precision medicine. As the field continues to develop, metabolomic epidemiology could lead to the discovery of diagnostic biomarkers predictive of disease risk, aiding in earlier disease detection and better prognosis. In this Review, we discuss key advances facilitated by the field of metabolomic epidemiology for a range of conditions, including cardiometabolic diseases, cancer, Alzheimer's disease and COVID-19, with a focus on potential clinical utility. Core principles in metabolomic epidemiology, including study design, causal inference methods and multi-omic integration, are briefly discussed. Future directions required for clinical translation of metabolomic epidemiology findings are summarized, emphasizing public health implications. Further work is needed to establish which metabolites reproducibly improve clinical risk prediction in diverse populations and are causally related to disease progression.
Collapse
Affiliation(s)
- Harriett Fuller
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yiwen Zhu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jayna Nicholas
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Haley A Chatelaine
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Emily M Drzymalla
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Afrand K Sarvestani
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | | | - Usman A Tahir
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Xinwei Hua
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| | - Katherine H Shutta
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Burcu F Darst
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
7
|
Chang L, Zhou G, Xia J. mGWAS-Explorer 2.0: Causal Analysis and Interpretation of Metabolite-Phenotype Associations. Metabolites 2023; 13:826. [PMID: 37512533 PMCID: PMC10384390 DOI: 10.3390/metabo13070826] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Metabolomics-based genome-wide association studies (mGWAS) are key to understanding the genetic regulations of metabolites in complex phenotypes. We previously developed mGWAS-Explorer 1.0 to link single-nucleotide polymorphisms (SNPs), metabolites, genes and phenotypes for hypothesis generation. It has become clear that identifying potential causal relationships between metabolites and phenotypes, as well as providing deep functional insights, are crucial for further downstream applications. Here, we introduce mGWAS-Explorer 2.0 to support the causal analysis between >4000 metabolites and various phenotypes. The results can be interpreted within the context of semantic triples and molecular quantitative trait loci (QTL) data. The underlying R package is released for reproducible analysis. Using two case studies, we demonstrate that mGWAS-Explorer 2.0 is able to detect potential causal relationships between arachidonic acid and Crohn's disease, as well as between glycine and coronary heart disease.
Collapse
Affiliation(s)
- Le Chang
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Guangyan Zhou
- Institute of Parasitology, McGill University, Montreal, QC H9X 3V9, Canada
| | - Jianguo Xia
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Institute of Parasitology, McGill University, Montreal, QC H9X 3V9, Canada
| |
Collapse
|
8
|
Barzegar Behrooz A, Latifi-Navid H, da Silva Rosa SC, Swiat M, Wiechec E, Vitorino C, Vitorino R, Jamalpoor Z, Ghavami S. Integrating Multi-Omics Analysis for Enhanced Diagnosis and Treatment of Glioblastoma: A Comprehensive Data-Driven Approach. Cancers (Basel) 2023; 15:3158. [PMID: 37370767 DOI: 10.3390/cancers15123158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The most aggressive primary malignant brain tumor in adults is glioblastoma (GBM), which has poor overall survival (OS). There is a high relapse rate among patients with GBM despite maximally safe surgery, radiation therapy, temozolomide (TMZ), and aggressive treatment. Hence, there is an urgent and unmet clinical need for new approaches to managing GBM. The current study identified modules (MYC, EGFR, PIK3CA, SUZ12, and SPRK2) involved in GBM disease through the NeDRex plugin. Furthermore, hub genes were identified in a comprehensive interaction network containing 7560 proteins related to GBM disease and 3860 proteins associated with signaling pathways involved in GBM. By integrating the results of the analyses mentioned above and again performing centrality analysis, eleven key genes involved in GBM disease were identified. ProteomicsDB and Gliovis databases were used for determining the gene expression in normal and tumor brain tissue. The NetworkAnalyst and the mGWAS-Explorer tools identified miRNAs, SNPs, and metabolites associated with these 11 genes. Moreover, a literature review of recent studies revealed other lists of metabolites related to GBM disease. The enrichment analysis of identified genes, miRNAs, and metabolites associated with GBM disease was performed using ExpressAnalyst, miEAA, and MetaboAnalyst tools. Further investigation of metabolite roles in GBM was performed using pathway, joint pathway, and network analyses. The results of this study allowed us to identify 11 genes (UBC, HDAC1, CTNNB1, TRIM28, CSNK2A1, RBBP4, TP53, APP, DAB1, PINK1, and RELN), five miRNAs (hsa-mir-221-3p, hsa-mir-30a-5p, hsa-mir-15a-5p, hsa-mir-130a-3p, and hsa-let-7b-5p), six metabolites (HDL, N6-acetyl-L-lysine, cholesterol, formate, N, N-dimethylglycine/xylose, and X2. piperidinone) and 15 distinct signaling pathways that play an indispensable role in GBM disease development. The identified top genes, miRNAs, and metabolite signatures can be targeted to establish early diagnostic methods and plan personalized GBM treatment strategies.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Trauma Research Center, Aja University of Medical Sciences, Tehran 14117-18541, Iran
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 14977-16316, Iran
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
| | - Maciej Swiat
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
| | - Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Carla Vitorino
- Coimbra Chemistry Coimbra, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-456 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
- UnIC, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Zahra Jamalpoor
- Trauma Research Center, Aja University of Medical Sciences, Tehran 14117-18541, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
9
|
Baron C, Cherkaoui S, Therrien-Laperriere S, Ilboudo Y, Poujol R, Mehanna P, Garrett ME, Telen MJ, Ashley-Koch AE, Bartolucci P, Rioux JD, Lettre G, Des Rosiers C, Ruiz M, Hussin JG. Gene-metabolite annotation with shortest reactional distance enhances metabolite genome-wide association studies results. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533869. [PMID: 36993181 PMCID: PMC10055409 DOI: 10.1101/2023.03.22.533869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Studies combining metabolomics and genetics, known as metabolite genome-wide association studies (mGWAS), have provided valuable insights into our understanding of the genetic control of metabolite levels. However, the biological interpretation of these associations remains challenging due to a lack of existing tools to annotate mGWAS gene-metabolite pairs beyond the use of conservative statistical significance threshold. Here, we computed the shortest reactional distance (SRD) based on the curated knowledge of the KEGG database to explore its utility in enhancing the biological interpretation of results from three independent mGWAS, including a case study on sickle cell disease patients. Results show that, in reported mGWAS pairs, there is an excess of small SRD values and that SRD values and p-values significantly correlate, even beyond the standard conservative thresholds. The added-value of SRD annotation is shown for identification of potential false negative hits, exemplified by the finding of gene-metabolite associations with SRD ≤1 that did not reach standard genome-wide significance cut-off. The wider use of this statistic as an mGWAS annotation would prevent the exclusion of biologically relevant associations and can also identify errors or gaps in current metabolic pathway databases. Our findings highlight the SRD metric as an objective, quantitative and easy-to-compute annotation for gene-metabolite pairs that can be used to integrate statistical evidence to biological networks.
Collapse
Affiliation(s)
- Cantin Baron
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Québec, Canada
- Montreal Heart Institute, Québec, Canada
| | - Sarah Cherkaoui
- Montreal Heart Institute, Québec, Canada
- Division of Oncology and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Switzerland
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
| | | | - Yann Ilboudo
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Québec, Canada
- Montreal Heart Institute, Québec, Canada
| | | | | | - Melanie E. Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Marilyn J. Telen
- Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | - Pablo Bartolucci
- Université Paris Est Créteil, Hôpitaux Universitaires Henri Mondor, APHP, Sickle cell referral center – UMGGR, Créteil, France
- Université Paris Est Créteil, IMRB, Laboratory of excellence LABEX, Créteil, France
| | - John D. Rioux
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Québec, Canada
- Montreal Heart Institute, Québec, Canada
- Département de Médecine, Université de Montréal, Québec, Canada
| | - Guillaume Lettre
- Montreal Heart Institute, Québec, Canada
- Département de Médecine, Université de Montréal, Québec, Canada
| | - Christine Des Rosiers
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Québec, Canada
- Montreal Heart Institute, Québec, Canada
- Département de Nutrition, Université de Montréal, Québec, Canada
| | - Matthieu Ruiz
- Montreal Heart Institute, Québec, Canada
- Département de Nutrition, Université de Montréal, Québec, Canada
| | - Julie G. Hussin
- Montreal Heart Institute, Québec, Canada
- Département de Médecine, Université de Montréal, Québec, Canada
| |
Collapse
|