1
|
Wei B, Zheng J, Chai J, Huang J, Duan H, Han S, Yang X, Zhang W, Hu F, Qu Y, Liu X, Liu T, Wu Y, Chi Y. Metabolomic and proteomic profiling of a burn-hemorrhagic shock swine model reveals a metabolomic signature associated with fatal outcomes. Eur J Med Res 2025; 30:10. [PMID: 39773520 PMCID: PMC11706163 DOI: 10.1186/s40001-024-02245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Burn-hemorrhagic shock combined injury, a severe condition causing complex stress responses and metabolic disturbances that significantly affect clinical outcomes in both military and civilian settings, was modeled in swine to investigate the associated metabolomic and proteomic changes and identify potential biomarkers for disease prognosis. METHODS Eight clean-grade adult male Landrace pigs (4-5 months, average weight 60-70 kg) were used to model burn-hemorrhagic shock combined injury. Serum samples collected at 0 h and 2 h post-injury were analyzed using metabolomic and proteomic measurements. The metabolomic and proteomic data were processed through partial least squares-discriminant analysis (PLS-DA) and the KEGG enrichment etc. Furthermore, the integrate analysis of the metabolomic and proteomic data was generalized by canonical correlation discriminant analysis, and the correlation between metabolites and mortality of the swine model was predicted using a multiple linear regression model by Pearson analysis. RESULTS PLS-DA revealed a global shift in each of the metabolomic and proteomic profiles following injury. The levels of 87 signature metabolites including various types of amino acids, fatty acids and acyl-carnitines of different lengths, and many metabolites in the gluconeogenesis, glycolysis, and tricarboxylic acid (TCA) cycle are generally increased (P < 0.05) after injury and can be used as biomarkers. Pathways related to amino acids metabolism and TCA cycle were significantly enriched (P < 0.01). In proteome analysis, we found dramatically altered (P < 0.05) levels of matrix and red blood cell-related proteins, such as type I collagen and hemoglobin. Most importantly, we found that the markedly elevated (P < 0.01) succinic acid, glutaric acid, and malic acid are closely associated (r = 0.863, 0.861, and 0.821, respectively) with injury severity by Pearson analysis, and can predict mortality using a multiple linear regression model. CONCLUSIONS The study provides compelling observations that burn-shock swine model undergoes dramatic changes in the acute phase and present a valuable panel for clinical use of prognosis.
Collapse
Affiliation(s)
- Bin Wei
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
- The First Department of Surgery, Chinese People's Armed Police Force Hospital of Beijing, Beijing, 100027, China
| | - Jinguang Zheng
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Jiake Chai
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China.
| | - Jianxiang Huang
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Hongjie Duan
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Shaofang Han
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Xiaolin Yang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Wenjia Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Fangchao Hu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Yirui Qu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Xiangyu Liu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Tian Liu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Yushou Wu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Yunfei Chi
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China.
| |
Collapse
|
2
|
Kiani Z, Khorsand N, Beigi F, Askari G, Sharma M, Bagherniya M. Coenzyme Q10 supplementation in burn patients: a double-blind placebo-controlled randomized clinical trial. Trials 2024; 25:160. [PMID: 38431600 PMCID: PMC10908042 DOI: 10.1186/s13063-024-08006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Burn injuries are important medical problems that, aside from skin damage, cause a systemic response including inflammation, oxidative stress, endocrine disorders, immune response, and hypermetabolic and catabolic responses which affect all the organs in the body. The aim of this study was to determine the effect of coenzyme Q10 (CoQ10) supplementation on inflammation, oxidative stress, and clinical outcomes in burn patients. METHODS In a double-blind placebo-controlled randomized clinical trial, 60 burn patients were randomly assigned to receive 100 mg CoQ10 three times a day (total 300 mg/day) or a placebo for 10 days. Inflammatory markers including erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), oxidative stress markers including total antioxidant capacity (TAC), malondialdehyde (MDA) and superoxide dismutase (SOD) activity, fasting blood glucose (FBG), blood urea nitrogen (BUN), creatinine, white blood cells (WBC), and body temperature were assessed as primary outcomes and albumin, prothrombin time (PT), partial thromboplastin time (PTT), international normalized ratio (INR), other hematological parameters, blood pressure, O2 saturation, ICU duration, and 28-mortality rate were assessed as secondary outcomes. RESULTS Fifty-two participants completed the trial. CRP and ESR levels were not significantly different between CoQ10 and placebo groups at the end of the study (P = 0.550 and P = 0.306, respectively). No significant differences between groups were observed for TAC (P = 0.865), MDA (P = 0.692), and SOD activity (P = 0.633) as well. Administration of CoQ10 resulted in a significant increase in albumin levels compared to placebo (P = 0.031). There was no statistically significant difference between the two groups in other measured outcomes (P > 0.05). CONCLUSION Results showed that in patients with burn injury, CoQ10 administration had no effect on inflammatory markers and oxidative stress, although serum albumin levels were improved after supplementation. Further studies with albumin as the primary outcome are needed to confirm this finding.
Collapse
Affiliation(s)
- Zahra Kiani
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nadereh Khorsand
- Department of Internal Medicine, Imam Musa Kazem Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Beigi
- Pharmaceutical Biotechnology Department, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Science, Isfahan, Iran
- Research and Development Unit, Imam Muss Kazim Hospital, Isfahan University of Medical Science, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Manoj Sharma
- Department of Social and Behavioral Health, School of Public Health, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Xiao Y, Zheng Y, Zhou Y, Yu C, Ye TE. Metabolic flux analysis of coenzyme Q 10 synthesized by Rhodobacter sphaeroides under the influence of different pH regulators. Microb Cell Fact 2023; 22:206. [PMID: 37817171 PMCID: PMC10563333 DOI: 10.1186/s12934-023-02205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is crucial for human beings, especially in the fields of biology and medicine. The aim of this experiment was to investigate the conditions for increasing CoQ10 production. At present, microbial fermentation is the main production method of CoQ10, and the production process of microbial CoQ10 metabolism control fermentation is very critical. Metabolic flux is one of the most important determinants of cell physiology in metabolic engineering. Metabolic flux analysis (MFA) is used to estimate the intracellular flux in metabolic networks. In this experiment, Rhodobacter sphaeroides was used as the research object to analyze the effects of aqueous ammonia (NH3·H2O) and calcium carbonate (CaCO3) on the metabolic flux of CoQ10. When CaCO3 was used to adjust the pH, the yield of CoQ10 was 274.43 mg·L-1 (8.71 mg·g-1 DCW), which was higher than that of NH3·H2O adjustment. The results indicated that when CaCO3 was used to adjust pH, more glucose-6-phosphate (G6P) entered the pentose phosphate (HMP) pathway and produced more NADPH, which enhanced the synthesis of CoQ10. At the chorismic acid node, more metabolic fluxes were involved in the synthesis of p-hydroxybenzoic acid (pHBA; the synthetic precursor of CoQ10), enhancing the anabolic flow of CoQ10. In addition, Ca2+ produced by the reaction of CaCO3 with organic acids promotes the synthesis of CoQ10. In summary, the use of CaCO3 adjustment is more favorable for the synthesis of CoQ10 by R. sphaeroides than NH3·H2O adjustment. The migration of metabolic flux caused by the perturbation of culture conditions was analyzed to compare the changes in the distribution of intracellular metabolic fluxes for the synthesis of CoQ10. Thus, the main nodes of the metabolic network were identified as G6P and chorismic acid. This provides a theoretical basis for the modification of genes related to the CoQ10 synthesis pathway.
Collapse
Affiliation(s)
- Yujun Xiao
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yi Zheng
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China.
| | - Yong Zhou
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Chaofan Yu
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Ting-E Ye
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|