1
|
Aioub AAA, Abdelnour SA, Hashem AS, Maher M, Abdel-Wahab SIZ, Alkeridis LA, Shukry M, Sayed SM, Elsobki AEA. Cinnamon nanoemulsion mitigates acetamiprid-induced hepatic and renal toxicity in rats: biochemical, histopathological, immunohistochemical, and molecular docking analysis. BMC Vet Res 2024; 20:256. [PMID: 38867202 PMCID: PMC11167909 DOI: 10.1186/s12917-024-04084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Acetamiprid (ACDP) is a widely used neonicotinoid insecticide that is popular for its efficacy in controlling fleas in domestic settings and for pets. Our study aims to offer a comprehensive examination of the toxicological impacts of ACDP and the prophylactic effects of cinnamon nanoemulsions (CMNEs) on the pathological, immunohistochemical, and hematological analyses induced by taking ACDP twice a week for 28 days. Forty healthy rats were divided into four groups (n = 10) at random; the first group served as control rats; the second received CMNEs (2 mg/Kg body weight); the third group received acetamiprid (ACDP group; 21.7 mg/Kg body weight), and the fourth group was given both ACDP and CMNEs by oral gavage. Following the study period, tissue and blood samples were extracted and prepared for analysis. According to a GC-MS analysis, CMNEs had several bioactive ingredients that protected the liver from oxidative stress by upregulating antioxidant and anti-inflammatory agents. Our findings demonstrated that whereas ACDP treatment considerably boosted white blood cells (WBCs) and lymphocytes, it significantly lowered body weight gain (BWG), red blood cells (RBCs), hemoglobin (Hb), hematocrit (HCT), and platelets (PLT). ACDP notably reduced antioxidant enzyme activities: superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) and elevated hydrogen peroxide and malondialdehyde levels compared with other groups. ACDP remarkably raised alanine aminotransferase (ALT), aspartate amino transaminase (AST), and alkaline phosphatase (ALP) levels.Moreover, the histopathological and immunohistochemistry assays discovered a severe toxic effect on the liver and kidney following ACDP delivery. Furthermore, cyclooxygenase 2 (COX-2) + immunoexpression was enhanced after treatment with CMNEs. All of the parameters above were returned to nearly normal levels by the coadministration of CMNEs. The molecular docking of cinnamaldehyde with COX-2 also confirmed the protective potential of CMNEs against ACDP toxicity. Our findings highlighted that the coadministration of CMNEs along with ACDP diminished its toxicity by cutting down oxidative stress and enhancing antioxidant capacity, demonstrating the effectiveness of CMNEs in lessening ACDP toxicity.
Collapse
Affiliation(s)
- Ahmed A A Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed S Hashem
- Stored Product Pests Research Department, Plant Protection Research Institute, Agricultural Research Center, Sakha, Kafr El-Sheikh, 33717, Egypt
| | - Mohamed Maher
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Sarah I Z Abdel-Wahab
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Lamya Ahmed Alkeridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, kafrelsheikh University, kafrelsheikh, 33516, Egypt
| | - Samy M Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
- Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed E A Elsobki
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
2
|
Zhang Y, Zhu X, Wang- Y. Development of machine learning models using multi-source data for geographical traceability and content prediction of Eucommia ulmoides leaves. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124136. [PMID: 38467098 DOI: 10.1016/j.saa.2024.124136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Rapid and scientific quality evaluation is a hot topic in the research of food and medicinal plants. With the increasing popularity of derivative products from Eucommia ulmoides leaves, quality and safety have attracted public attention. The present study utilized multi-source data and traditional machine learning to conduct geographical traceability and content prediction research on Eucommia ulmoides leaves. Explored the impact of different preprocessing methods and low-level data fusion strategy on the performance of classification and regression models. The classification analysis results indicated that the partial least squares discriminant analysis (PLS-DA) established by low-level fusion of two infrared spectroscopy techniques based on first derivative (FD) preprocessing was most suitable for geographical traceability of Eucommia ulmoides leaves, with an accuracy rate of up to 100 %. Through regression analysis, it was found that the preprocessing methods and data blocks applicable to the four chemical components were inconsistent. The optimal partial least squares regression (PLSR) model based on aucubin (AU), geniposidic acid (GPA), and chlorogenic acid (CA) had a residual predictive deviation (RPD) value higher than 2.0, achieving satisfactory predictive performance. However, the PLSR model based on quercetin (QU) had poor performance (RPD = 1.541) and needed further improvement. Overall, the present study proposed a strategy that can effectively evaluate the quality of Eucommia ulmoides leaves, while also providing new ideas for the quality evaluation of food and medicinal plants.
Collapse
Affiliation(s)
- Yanying Zhang
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Xinyan Zhu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Yuanzhong Wang-
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China.
| |
Collapse
|
3
|
Ware I, Franke K, Frolov A, Bureiko K, Kysil E, Yahayu M, El Enshasy HA, Wessjohann LA. Comparative metabolite analysis of Piper sarmentosum organs approached by LC-MS-based metabolic profiling. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:30. [PMID: 38743199 PMCID: PMC11093948 DOI: 10.1007/s13659-024-00453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Piper sarmentosum Roxb. (Piperaceae) is a traditional medicinal and food plant widely distributed in the tropical and subtropical regions of Asia, offering both health and culinary benefits. In this study the secondary metabolites in different organs of P. sarmentosum were identified and their relative abundances were characterized. The metabolic profiles of leaves, roots, stems and fruits were comprehensively investigated by liquid chromatography high-resolution mass spectrometry (LC-HR-MS) and the data subsequently analyzed using multivariate statistical methods. Manual interpretation of the tandem mass spectrometric (MS/MS) fragmentation patterns revealed the presence of 154 tentatively identified metabolites, mostly represented by alkaloids and flavonoids. Principle component analysis and hierarchical clustering indicated the predominant occurrence of flavonoids, lignans and phenyl propanoids in leaves, aporphines in stems, piperamides in fruits and lignan-amides in roots. Overall, this study provides extensive data on the metabolite composition of P. sarmentosum, supplying useful information for bioactive compounds discovery and patterns of their preferential biosynthesis or storage in specific organs. This can be used to optimize production and harvesting as well as to maximize the plant's economic value as herbal medicine or in food applications.
Collapse
Affiliation(s)
- Ismail Ware
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Katrin Franke
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany.
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108, Halle (Saale), Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Kseniia Bureiko
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Elana Kysil
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Maizatulakmal Yahayu
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
- City of Scientific Research and Technology Applications, New Borg Al Arab, Alexandria, 21934, Egypt
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
4
|
Ragupathy S, Thirugnanasambandam A, Vinayagam V, Newmaster SG. Nuclear Magnetic Resonance Fingerprints and Mini DNA Markers for the Authentication of Cinnamon Species Ingredients Used in Food and Natural Health Products. PLANTS (BASEL, SWITZERLAND) 2024; 13:841. [PMID: 38592863 PMCID: PMC10975438 DOI: 10.3390/plants13060841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Cinnamomum verum (syn C. zeylanicum) is considered 'true' cinnamon. However, it is reported that less expensive sources of cinnamon from C. cassia (syn C. aromaticum), C. loureiroi, and C. burmannii (toxic coumarin) may be used in the place of C. verum. We lack the quality assurance tools that are required to differentiate C. verum from other cinnamon species when verifying that the correct species is sourced from ingredient suppliers. The current research on cinnamon species authentication using DNA tools is limited to a few species and the use of high-quality DNA extracted from raw leaf materials. The cinnamon bark traded in the supply chain contains much less DNA and poorer-quality DNA than leaves. Our research advances DNA methods to authenticate cinnamon, as we utilized full-length chloroplast genomes via a genome skimming approach for C. burmannii and C. cassia to facilitate the design of optimal mini DNA markers. Furthermore, we developed and validated the use of NMR fingerprints for several commercial cinnamon species, including the quantification of 16 molecules. NMR fingerprints provided additional data that were useful for quality assessment in cinnamon extract powders and product consistency. Both the new mini DNA markers and NMR fingerprints were tested on commercial cinnamon products.
Collapse
Affiliation(s)
- Subramanyam Ragupathy
- Natural Health Products (NHP) Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.V.); (S.G.N.)
| | - Arunachalam Thirugnanasambandam
- Natural Health Products (NHP) Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.V.); (S.G.N.)
| | | | | |
Collapse
|
5
|
Lin L, Liu G, Zhang D, Yu F, Tan L, Mu X, Lin Y. Quality grade evaluation of Nvjin Pills based on traditional Chinese medicine reference drug and network pharmacology of target-focused compounds. J Sep Sci 2024; 47:e2300134. [PMID: 37994399 DOI: 10.1002/jssc.202300134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
To improve the effectiveness of marketed drugs related to active ingredients, it is necessary to designate a more unified quality evaluation standard. Taking Nvjin Pills as an example, this study reported the development of a novel principle of analysis in traditional Chinese medicine. The core of the experiment is to prepare three batches of traditional Chinese medicine reference drugs by high-quality Chinese materia medica. The active ingredients identified in the herbal formula including glycyrrhizic acid, cinnamaldehyde, paeonol, baicalin, hesperidin, paeoniflorin, and ferulic acid were analyzed in traditional Chinese medicine reference drugs by the high-performance liquid chromatography method combined with wavelength switching. The simple prediction results of network pharmacological analysis verified the feasibility and reliability of the established quantitative analysis method for seven target-focused compounds in Nvjin Pills, which were recommended as candidate indicators for quality evaluation ultimately. Using the seven target-focused compounds as the scientific ruler, quality grade specifications of Nvjin Pills were proposed by comprehensive analysis. Accordingly, 16, 47, and 13 batches of samples were primarily graded as first grade, second grade, and unqualified grade, respectively. This study will provide a chemical basis for quality control of Nvjin Pills, which is necessary for the production process of pharmaceutical development.
Collapse
Affiliation(s)
- Lin Lin
- Shandong Institute for Food and Drug Control, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of Traditional Chinese Medicine, Jinan, China
| | - Guangzhen Liu
- Shandong Institute for Food and Drug Control, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of Traditional Chinese Medicine, Jinan, China
| | - Dexin Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengrui Yu
- Shandong Institute for Food and Drug Control, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of Traditional Chinese Medicine, Jinan, China
| | - Lejun Tan
- Shandong Institute for Food and Drug Control, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of Traditional Chinese Medicine, Jinan, China
| | - Xiangrong Mu
- Shandong Institute for Food and Drug Control, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of Traditional Chinese Medicine, Jinan, China
| | - Yongqiang Lin
- Shandong Institute for Food and Drug Control, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Kamal IM, Zayed A, Eissa TF, Farag MA. Aroma-based discrimination of Egyptian versus Indian guava fruits and in response to probiotics as analyzed via SPME/GC-MS and chemometric tools. Sci Rep 2023; 13:18420. [PMID: 37891358 PMCID: PMC10611719 DOI: 10.1038/s41598-023-45686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023] Open
Abstract
Guava tree (Psidium guajava L., Myrtaceae) is an economic grown worldwide, particularly in tropical and subtropical regions. Guavas encompass numerous cultivars (cvs.) that were discriminated in previous studies based on leaf morphological features and profile of volatile organic compounds (VOCs). Nevertheless, fruit VOCs have also shown outstanding potential for discrimination of other plant taxa, which has not been utilized in guava. Hence, the current study investigates the various guava cvs. harvested from India and Egypt. A total of 5 samples were analyzed by solid phase microextraction coupled to gas chromatography/mass spectrometry. Results led to the detection of 42 VOCs belonging to aldehydes, alcohols, esters, ketones, aliphatic and aromatic hydrocarbons, in addition to monoterpene and sesquiterpene hydrocarbons. Butylated hydroxytoluene and β-caryophyllene were predominant reaching 77% and 41% in Egyptian and Indian guava, respectively. The impact of probiotic fermentation, i.e., Lactobacillus acidophilus and L. plantarum on aroma profile was not significantly different (p > 0.05). Multivariate data analyses were further applied for samples classification and markers determination, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). PCA score plot showed clear segregation of Egyptian from Indian specimens, whereas OPLS-DA revealed that β-caryophyllene was associated with white fruit versus 3-butenyl isothiocyanate and muurolol in red fruit type in the case of Indian guava. The richness of Egyptian guava in butylated hydroxytoluene in addition to the presence of vitamin C may potentiate its antioxidant activity, to be followed in subsequent studies regarding its health effects.
Collapse
Affiliation(s)
- Islam M Kamal
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527, Egypt
| | - Tarek F Eissa
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., 11562, Cairo, Egypt.
| |
Collapse
|
7
|
Muralitharan D, Varadharajan V, Venkidasamy B. Cheminformatics and systems pharmacology approaches to unveil the potential plant bioactives to combat COVID-19. J Mol Recognit 2023; 36:e3055. [PMID: 37658788 DOI: 10.1002/jmr.3055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
COVID-19 was a global pandemic in the year 2020. Several treatment options failed to cure the disease. Thus, plant-based medicines are becoming a trend nowadays due to their less side effects. Bioactive chemicals from natural sources have been utilised for centuries as treatment options for a variety of ailments. To find out the potent bioactive compounds to counteract COVID-19, we use systems pharmacology and cheminformatics. They use the definitive data and predict the possible outcomes. In this study, we collected a total of 72 phytocompounds from the medicinally important plants such as Garcinia mangostana and Cinnamomum verum, of which 13 potential phytocompounds were identified to be active against the COVID-19 infection based on Swiss Target Prediction and compound target network analysis. These phytocompounds were annotated to identify the specific human receptor that targets COVID-19-specific genes such as MAPK8, MAPK14, ACE, CYP3A4, TLR4 and TYK2. Among these, compounds such as smeathxanthone A, demethylcalabaxanthone, mangostanol, trapezifolixanthone from Garcinia mangostana and camphene from C. verum were putatively target various COVID-19-related genes. Molecular docking results showed that smeathxanthone A and demethylcalabaxanthone exhibit increased binding efficiency towards the COVID-19-related receptor proteins. These compounds also showed efficient putative pharmacoactive properties than the commercial drugs ((R)-remdesivir, favipiravir and hydroxychloroquine) used to cure COVID-19. In conclusion, our study highlights the use of cheminformatics approach to unravel the potent and novel phytocompounds against COVID-19. These phytocompounds may be safer to use, more efficient and less harmful. This study highlights the value of natural products in the search for new drugs and identifies candidates with great promise.
Collapse
Affiliation(s)
- Dhivyadharshini Muralitharan
- Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | | | - Baskar Venkidasamy
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| |
Collapse
|
8
|
Farag MA, Reda A, Nabil M, Elimam DM, Zayed A. Evening primrose oil: a comprehensive review of its bioactives, extraction, analysis, oil quality, therapeutic merits, and safety. Food Funct 2023; 14:8049-8070. [PMID: 37614101 DOI: 10.1039/d3fo01949g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Oil crops have become increasingly farmed worldwide because of their numerous functions in foods and health. In particular, oil derived from the seeds of evening primrose (Oenothera biennis) (EPO) comprises essential fatty acids of the omega-6 (ω-6) series. It is well recognized to promote immune cells with a healthy balance and management of female ailments. The nutrients of interest in this oil are linoleic acid (LA, 70-74%) and γ-linolenic acid (GLA, 8-10%), which are polyunsaturated fatty acids (PUFA) that account for EPO's popularity as a dietary supplement. Various other chemicals in EPO function together to supply the body with PUFA, elevate normal ω-6 essential fatty acid levels, and support general health and well-being. The inclusive EPO biochemical analysis further succeeded in identifying several other components, i.e., triterpenes, phenolic acids, tocopherols, and phytosterols of potential health benefits. This comprehensive review capitalizes on EPO, the superior product of O. biennis, highlighting the interrelationship between various methods of cultivation, extraction, holistic chemical composition, sensory characters, and medicinal value. Besides the literature review, this study restates the numerous health advantages of primrose oil and possible drug-EPO interactions since a wide spectrum of drugs are administered concomitantly with EPO. Modern techniques to evaluate EPO chemical composition are addressed with emphasis on the missing gaps and future perspectives to ensure best oil quality and nutraceutical benefits.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., 11562 Cairo, Egypt.
| | - Ali Reda
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed Nabil
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Diaaeldin M Elimam
- Department of Pharmacognosy, Faculty of Pharmacy, Kafr Elsheikh University, Kafr El-sheikh, Egypt
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish street (Medical Campus), Tanta 31527, Egypt
| |
Collapse
|
9
|
Grazina L, Mafra I, Monaci L, Amaral JS. Mass spectrometry-based approaches to assess the botanical authenticity of dietary supplements. Compr Rev Food Sci Food Saf 2023; 22:3870-3909. [PMID: 37548598 DOI: 10.1111/1541-4337.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023]
Abstract
Dietary supplements are legally considered foods despite frequently including medicinal plants as ingredients. Currently, the consumption of herbal dietary supplements, also known as plant food supplements (PFS), is increasing worldwide and some raw botanicals, highly demanded due to their popularity, extensive use, and/or well-established pharmacological effects, have been attaining high prices in the international markets. Therefore, botanical adulteration for profit increase can occur along the whole PFS industry chain, from raw botanicals to plant extracts, until final PFS. Besides the substitution of high-value species, unintentional mislabeling can happen in morphologically similar species. Both cases represent a health risk for consumers, prompting the development of numerous works to access botanical adulterations in PFS. Among different approaches proposed for this purpose, mass spectrometry (MS)-based techniques have often been reported as the most promising, particularly when hyphenated with chromatographic techniques. Thus, this review aims at describing an overview of the developments in this field, focusing on the applications of MS-based techniques to targeted and untargeted analysis to detect botanical adulterations in plant materials, extracts, and PFS.
Collapse
Affiliation(s)
- Liliana Grazina
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Linda Monaci
- ISPA-CNR, Institute of Sciences of Food Production of National Research Council of Italy, Bari, Italy
| | - Joana S Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
10
|
Farag MA, Baky MH, Morgan I, Khalifa MR, Rennert R, Mohamed OG, El-Sayed MM, Porzel A, Wessjohann LA, Ramadan NS. Comparison of Balanites aegyptiaca parts: metabolome providing insights into plant health benefits and valorization purposes as analyzed using multiplex GC-MS, LC-MS, NMR-based metabolomics, and molecular networking. RSC Adv 2023; 13:21471-21493. [PMID: 37485437 PMCID: PMC10359763 DOI: 10.1039/d3ra03141a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Balanites aegyptiaca (L.) Delile (Zygophyllaceae), also known as the desert date, is an edible fruit-producing tree popular for its nutritional and several health benefits. In this study, multi-targeted comparative metabolic profiling and fingerprinting approaches were conducted for the assessment of the nutrient primary and secondary metabolite heterogeneity in different parts, such as leaves, stems, seeds, unripe, and ripe fruits of B. aegyptiaca using nuclear magnetic resonance (NMR), ultra-performance liquid chromatography (UPLC-MS), and gas chromatography mass-spectrometry (GC-MS) based metabolomics coupled to multivariate analyses and in relation to its cytotoxic activities. NMR-based metabolomic study identified and quantified 15 major primary and secondary metabolites belonging to alkaloids, saponins, flavonoids, sugars, and amino and fatty acids. Principal component analysis (PCA) of the NMR dataset revealed α-glucose, sucrose, and isorhamnetin as markers for fruit and stem and unsaturated fatty acids for predominated seeds. Orthogonal projections to latent structure discriminant analysis (OPLS-DA) revealed trigonelline as a major distinctive metabolite in the immature fruit and isorhamnetin as a major distinct marker in the mature fruit. UPLC-MS/MS analysis using feature-based molecular networks revealed diverse chemical classes viz. steroidal saponins, N-containing metabolites, phenolics, fatty acids, and lipids as the constitutive metabolome in Balanites. Gas chromatography-mass spectroscopy (GC-MS) profiling of primary metabolites led to the detection of 135 peaks belonging to sugars, fatty acids/esters, amino acids, nitrogenous, and organic acids. Monosaccharides were detected at much higher levels in ripe fruit and disaccharides in predominate unripe fruits, whereas B. aegyptiaca vegetative parts (leaves and stem) were rich in amino acids and fatty acids. The antidiabetic compounds, viz, nicotinic acid, and trigonelline, were detected in all parts especially unripe fruit in addition to the sugar alcohol d-pinitol for the first time providing novel evidence for B. aegyptiaca use in diabetes. In vitro cytotoxic activity revealed the potential efficacy of immature fruit and seeds as cytotoxic agents against human prostate cancer (PC3) and human colorectal cancer (HCT-116) cell lines. Collectively, such detailed profiling of parts provides novel evidence for B. aegyptiaca medicinal uses.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University Cairo 11562 Egypt +011-202-2362245
| | - Mostafa H Baky
- Pharmacognosy Department, Faculty of Pharmacy, Egyptian Russian University Badr City Cairo 11829 Egypt
| | - Ibrahim Morgan
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB) Weinberg 3 Halle (Saale) 06120 Germany
| | - Mohamed R Khalifa
- Global Public Health Institute, American University in Cairo New Cairo Egypt
| | - Robert Rennert
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB) Weinberg 3 Halle (Saale) 06120 Germany
| | - Osama G Mohamed
- Pharmacognosy Department, College of Pharmacy, Cairo University Cairo 11562 Egypt +011-202-2362245
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Magdy M El-Sayed
- Dairy Science Department, National Research Centre Giza 12622 Egypt
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB) Weinberg 3 Halle (Saale) 06120 Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB) Weinberg 3 Halle (Saale) 06120 Germany
| | - Nehal S Ramadan
- Chemistry of Tanning Materials and Leather Technology Department, National Research Centre Dokki Giza 12622 Egypt
| |
Collapse
|
11
|
Khattab OM, El-Kersh DM, Khalifa SAM, Yosri N, El-Seedi HR, Farag MA. Comparative MS- and NMR-Based Metabolome Mapping of Egyptian Red and White Squill Bulbs F. Liliaceae and in Relation to Their Cytotoxic Effect. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112078. [PMID: 37299060 DOI: 10.3390/plants12112078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Urginea maritima L. (squill) species is widely spread at the Mediterranean region as two main varieties, i.e., white squill (WS) and red squill (RS), that are recognized for several health potentials. The major secondary metabolite classes of the squill are cardiac glycosides, mainly, bufadienolides, flavonoids, and anthocyanins. Herein, a multiplex MS and NMR metabolomics approach targeting secondary and aroma compounds in WS and RS was employed for varieties classification. Solid-phase micro extraction-gas chromatography/mass spectroscopy (SPME-GC/MS), ultra-high-performance liquid chromatography/mass spectrometry (UPLC/MS), as well as nuclear magnetic resonance (NMR) provided fingerprinting and structural confirmation of the major metabolites for both types of the squill. For comparison of the different platforms' classification potential, multivariate data analysis was employed. While Bufadienolides, viz. "hydroxy-scilliglaucosidin-O-rhamnoside, desacetylscillirosidin-O-rhamnoside and bufotalidin-O-hexoside" as well as oxylipids, were enriched in WS, flavonoids, i.e., dihydro-kaempferol-O-hexoside and its aglycon, taxifolin derivative, were predominant in RS. A cytotoxicity screening against three cancer cell lines, including breast adenocarcinoma (MCF-7), lung (A-549), and ovarian (SKOV-3) cell lines was conducted. Results revealed that WS was more effective on A-549 and SKOV-3 cell lines (WS IC50 0.11 and 0.4 µg/mL, respectively) owing to its abundance of bufadienolides, while RS recorded IC50 (MCF7 cell line) 0.17 µg/mL since is is rich inflavonoids.
Collapse
Affiliation(s)
- Omar M Khattab
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Dina M El-Kersh
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, Cairo 11837, Egypt
| | - Shaden A M Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| | - Nermeen Yosri
- Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Zhenjiang 212013, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| |
Collapse
|
12
|
Unveiling metabolome heterogeneity and new chemicals in 7 tomato varieties via multiplex approach of UHPLC-MS/MS, GC-MS, and UV-Vis in relation to antioxidant effects as analyzed using molecular networking and chemometrics. Food Chem 2023; 417:135866. [PMID: 36913868 DOI: 10.1016/j.foodchem.2023.135866] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/21/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Tomatoes show diverse phytochemical attributes that contribute to their nutritive and health values. This study comprehensively dissects primary and secondary metabolite profiles of seven tomato varieties. UHPLC-qTOF-MS assisted molecular networking was used to monitor 206 metabolites, 30 of which were first-time to be reported. Flavonoids, as valuable antioxidants, were enriched in light-colored tomatoes (golden sweet, sun gold, and yellow plum) versus high tomatoside A, an antihyperglycemic saponin, in cherry bomb and red plum varieties. UV-Vis analysis revealed similar results with a strong absorbance corresponding to rich phenolic content in light varieties. GC-MS unveiled monosaccharides as the main contributors to samples' segregation, found abundant in San Marzano tomato accounting for its sweet flavor. Fruits also demonstrated potential antioxidant activities in correlation to their flavonoids and phospholipids. This work provides a complete map of tomatoes' metabolome heterogeneity for future breeding programs and a comparative approach utilizing different metabolomic platforms for tomato analysis.
Collapse
|
13
|
Serag A, Zayed A, Mediani A, Farag MA. Integrated comparative metabolite profiling via NMR and GC-MS analyses for tongkat ali (Eurycoma longifolia) fingerprinting and quality control analysis. Sci Rep 2023; 13:2533. [PMID: 36781893 PMCID: PMC9925447 DOI: 10.1038/s41598-023-28551-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/19/2023] [Indexed: 02/15/2023] Open
Abstract
Tongkat ali commonly known as Malaysian Ginseng (Eurycoma longifolia) is a herbal root worldwide available in nutraceuticals, either as a crude powder or capsules blended with other herbal products. Herein, a multiplexed metabolomics approach based on nuclear magnetic resonance (NMR) and solid-phase microextraction combined with gas chromatography-mass spectrometry (SPME-GC-MS) was applied for authentic tongkat ali extract vs some commercial products quality control analysis. NMR metabolite fingerprinting identified 15 major metabolites mostly ascribed to sugars, organic and fatty acids in addition to quassinoids and cinnamates. Following that, multivariate analysis as the non-supervised principal component analysis (PCA) and supervised orthogonal partial least squares-discriminant analysis (OPLS-DA) were applied revealing that differences were related to fatty acids and 13,21-dihydroeurycomanone being more enriched in authentic root. SPME-GC-MS aroma profiling led to the identification of 59 volatiles belonging mainly to alcohols, aldehydes/furans and sesquiterpene hydrocarbons. Results revealed that aroma of commercial products showed relatively different profiles being rich in vanillin, maltol, and methyl octanoate. Whereas E-cinnamaldehyde, endo-borneol, terpinen-4-ol, and benzaldehyde were more associated to the authentic product. The present study shed the light for the potential of metabolomics in authentication and standardization of tongkat ali and identification of its true flavor composition.
Collapse
Affiliation(s)
- Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527, Egypt
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, P.B. 11562, Kasr el Aini St., Cairo, Egypt.
| |
Collapse
|
14
|
Comparative Insights into Four Major Legume Sprouts Efficacies for Diabetes Management and Its Complications: Untargeted versus Targeted NMR Biochemometrics Approach. Metabolites 2022; 13:metabo13010063. [PMID: 36676988 PMCID: PMC9866814 DOI: 10.3390/metabo13010063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Interest in the consumption of seed sprouts is gradually increasing as functional foods in the modern Western diet owing to their several nutritional and health benefits. The present study aims to investigate four major legume sprouts derived from faba bean (Vicia faba L.), lentil (Lens esculenta L.), chickpea (Cicer arietinum L.), and fenugreek (Trigonella foenum-greacum L.) for their antidiabetic activity and mitigation of associated complications, i.e., oxidative stress, liver dysfunction, and lipid metabolism, compared with glibenclamide. Biochemical results presented herein further showed that the four sprouts exhibited significant hypoglycemic effects (p < 0.05), with improvement in decreasing of blood glucose levels at different degrees and with faba bean sprout most active at 348% improvement, compared to 364.3% for glibenclamide. Further biochemometric analysis based on a comparison between targeted versus untargeted partial least square (PLS) and regression analyses revealed that faba bean sprouts’ richness in flavonoids was a determinant key factor for such efficacy. In addition, correlation with previously investigated NMR fingerprinting aided in pinpointing other active agents, such as betaine and L-DOPA. Furthermore, the effect on serum liver enzymes, including alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase; oxidative stress markers; and lipid profiles showed significant improvement, especially in the case of faba bean sprout. The study revealed the potential health benefits of legume sprouts in the treatment of diabetes and its associated complications, as well as the potential role of biochemometrics in active agents’ identification in such a complex matrix to be considered for other functional foods investigation.
Collapse
|
15
|
Zhao FK, Shi RB, Sun YB, Yang SY, Chen LZ, Fang BH. A Comprehensive Study to Identify Major Metabolites of an Amoxicillin-Sulbactam Hybrid Molecule in Rats and Its Metabolic Pathway Using UPLC-Q-TOF-MS/MS. Metabolites 2022; 12:662. [PMID: 35888786 PMCID: PMC9319383 DOI: 10.3390/metabo12070662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
Amoxicillin and sulbactam are widely used compound drugs in animal food. The amoxicillin-sulbactam hybrid molecule can achieve better curative effects through the combination of the two drugs. However, its pharmacokinetic behavior needs to be explored. In this study, a randomized crossover experiment was performed to investigate the metabolism of the novel amoxicillin-sulbactam hybrid molecule in rats after gastric administration. Ultrahigh performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) was used to isolate and to identify the metabolites in rats. Amoxicillin, amoxicilloic acid, amoxicillin diketopiperazine, and sulbactam were eventually detected in the plasma, liver, urine, and kidneys; no hybrid molecules and their metabolites were detected in feces. The in vivo metabolism results showed that the hybrid molecule was absorbed into the body in the intestine, producing amoxicillin and sulbactam, then amoxicillin was partially metabolized to amoxicilloic acid and amoxicillin diketopiperazine, which are eventually excreted in the urine by the kidneys. In this study, four major metabolites of the amoxicillin-sulbactam hybrid molecule were identified and their metabolic pathways were speculated, which provided scientific data for understanding the metabolism of the hybrid molecule and for its clinical rational use.
Collapse
Affiliation(s)
- Fei-Ke Zhao
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; (F.-K.Z.); (R.-B.S.); (S.-Y.Y.)
| | - Ren-Bin Shi
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; (F.-K.Z.); (R.-B.S.); (S.-Y.Y.)
| | - Yu-Bin Sun
- Shenzhen Institute for Drug Control, Shenzhen 518057, China;
| | - Shuang-Yun Yang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; (F.-K.Z.); (R.-B.S.); (S.-Y.Y.)
| | - Liang-Zhu Chen
- Guangdong Dahuanong Animal Health Products Co., Ltd., Yunfu 527400, China;
| | - Bing-Hu Fang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510630, China
| |
Collapse
|