1
|
Zhu A, Liu M, Tian Z, Liu W, Hu X, Ao M, Jia J, Shi T, Liu H, Li D, Mao H, Su H, Yan W, Li Q, Lan C, Fernie AR, Chen W. Chemical-tag-based semi-annotated metabolomics facilitates gene identification and specialized metabolic pathway elucidation in wheat. THE PLANT CELL 2024; 36:540-558. [PMID: 37956052 PMCID: PMC10896294 DOI: 10.1093/plcell/koad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
The importance of metabolite modification and species-specific metabolic pathways has long been recognized. However, linking the chemical structure of metabolites to gene function in order to explore the genetic and biochemical basis of metabolism has not yet been reported in wheat (Triticum aestivum). Here, we profiled metabolic fragment enrichment in wheat leaves and consequently applied chemical-tag-based semi-annotated metabolomics in a genome-wide association study in accessions of wheat. The studies revealed that all 1,483 quantified metabolites have at least one known functional group whose modification is tailored in an enzyme-catalyzed manner and eventually allows efficient candidate gene mining. A Triticeae crop-specific flavonoid pathway and its underlying metabolic gene cluster were elucidated in further functional studies. Additionally, upon overexpressing the major effect gene of the cluster TraesCS2B01G460000 (TaOMT24), the pathway was reconstructed in rice (Oryza sativa), which lacks this pathway. The reported workflow represents an efficient and unbiased approach for gene mining using forward genetics in hexaploid wheat. The resultant candidate gene list contains vast molecular resources for decoding the genetic architecture of complex traits and identifying valuable breeding targets and will ultimately aid in achieving wheat crop improvement.
Collapse
Affiliation(s)
- Anting Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Mengmeng Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhitao Tian
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wei Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Min Ao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jingqi Jia
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Taotao Shi
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Department of Root Biology and Symbiosis, Potsdam-Golm 14476, Germany
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
2
|
Tian Z, Hu X, Xu Y, Liu M, Liu H, Li D, Hu L, Wei G, Chen W. PMhub 1.0: a comprehensive plant metabolome database. Nucleic Acids Res 2024; 52:D1579-D1587. [PMID: 37819039 PMCID: PMC10767808 DOI: 10.1093/nar/gkad811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
The Plant Metabolome Hub (PMhub), available at https://pmhub.org.cn, is a valuable resource designed to provide scientists with comprehensive information on plant metabolites. It offers extensive details about their reference spectra, genetic foundations, chemical reactions, metabolic pathways and biological functions. The PMhub contains chemical data for 188 837 plant metabolites gathered from various sources, with 1 467 041 standard/in-silico high-resolution tandem mass-spectrometry (HRMS/MS) spectra corresponding to these metabolites. Beyond its extensive literature-derived data, PMhub also boasts a sizable collection of experimental metabolites; it contains 144 366 detected features in 10 typical plant species, with 16 423 successfully annotated by using standard/in-silico HRMS/MS data, this collection is further supplemented with thousands of features gathered from reference metabolites. For each metabolite, the PMhub enables the reconstructed of a simulated network based on structural similarities and existing metabolic pathways. Unlike previous plant-specific metabolome databases, PMhub not only contains a vast amount of metabolic data but also assembles the corresponding genomic and/or transcriptomic information, incorporating multiple methods for the comprehensive genetic analysis of metabolites. To validate the practicality, we verified a synthetic pathway for N-p-coumaroyltyramine by in vitro enzymatic activity experiments. In summary, the robust functionality provided by the PMhub will make it an indispensable tool for studying plant metabolomics.
Collapse
Affiliation(s)
- Zhitao Tian
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yingying Xu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Mengmeng Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lisong Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Guozhu Wei
- BioBioPha Co., Ltd., Kunming 650201, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
3
|
Li K, Cheng Y, Fang C. OsDWARF10, transcriptionally repressed by OsSPL3, regulates the nutritional metabolism of polished rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1322463. [PMID: 38130489 PMCID: PMC10733476 DOI: 10.3389/fpls.2023.1322463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Strigolactone (SL) plays essential roles in plant development and the metabolism of rice leaves. However, the impact of SL on the accumulation of nutritional metabolites in polished rice, as well as the transcription factors directly involved in SL synthesis, remains elusive. In this study, we performed a metabolome analysis on polished rice samples from mutants of an SL biosynthetic gene, OsDWARF10 (OsD10). Compared with those in the wild type plants, primary and secondary metabolites exhibited a series of alterations in the d10 mutants. Notably, the d10 mutants showed a substantial increase in the amino acids and vitamins content. Through a yeast one-hybridization screening assay, we identified OsSPL3 as a transcription factor that binds to the OsD10 promoter, thereby inhibiting OsD10 transcription in vivo and in vitro. Furthermore, we conducted a metabolic profiling analysis in polished rice from plants that overexpressed OsSPL3 and observed enhanced levels of amino acids and vitamins. This study identified a novel transcriptional repressor of the SL biosynthetic gene and elucidated the regulatory roles of OsSPL3 and OsD10 on the accumulation of nutritional metabolites in polished rice.
Collapse
Affiliation(s)
- Kang Li
- Hainan Yazhou Bay Seed Laboratory, Scool of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yan Cheng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chuanying Fang
- Hainan Yazhou Bay Seed Laboratory, Scool of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
4
|
Chang E, Guo W, Dong Y, Jia Z, Zhao X, Jiang Z, Zhang L, Zhang J, Liu J. Metabolic profiling reveals key metabolites regulating adventitious root formation in ancient Platycladus orientalis cuttings. FRONTIERS IN PLANT SCIENCE 2023; 14:1192371. [PMID: 37496863 PMCID: PMC10367097 DOI: 10.3389/fpls.2023.1192371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 07/28/2023]
Abstract
Platycladus orientalis, a common horticultural tree species, has an extremely long life span and forms a graceful canopy. Its branches, leaves, and cones have been used in traditional Chinese medicine. However, difficulty in rooting is the main limiting factor for the conservation of germplasm resources. This study shows that the rooting rates and root numbers of cuttings were significantly reduced in ancient P. orientalis donors compared to 5-year-old P. orientalis donors. The contents of differentially accumulated metabolites (DAMs) in phenylpropanoid (caffeic acid and coniferyl alcohol) and flavonoid biosynthesis (cinnamoyl-CoA and isoliquiritigenin) pathways increased significantly in cuttings propagated from ancient P. orientalis donors compared to 5-year-old P. orientalis donors during adventitious root (AR) formation. These DAMs may prevent the ancient P. orientalis cuttings from rooting, and gradual lignification of callus was one of the main reasons for the failed rooting of ancient P. orientalis cuttings. The rooting rates of ancient P. orientalis cuttings were improved by wounding the callus to identify wounding-induced rooting-promoting metabolites. After wounding, the contents of DAMs in zeatin (5'-methylthioadenosine, cis-zeatin-O-glucoside, and adenine) and aminoacyl-tRNA biosynthesis (l-glutamine, l-histidine, l-isoleucine, l-leucine, and l-arginine) pathways increased, which might promote cell division and provided energy for the rooting process. The findings of our study suggest that breaking down the lignification of callus via wounding can eventually improve the rooting rates of ancient P. orientalis cuttings, which provides a new solution for cuttings of other difficult-to-root horticultural and woody plants.
Collapse
Affiliation(s)
- Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Taian, Shandong, China
| | - Yao Dong
- Key Laboratory of Forest Ecology of National Forestry and Grassland Administration, Environment and Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiulian Zhao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Zeping Jiang
- Key Laboratory of Forest Ecology of National Forestry and Grassland Administration, Environment and Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Li Zhang
- College of Agricultural and Biological Engineering, Heze University, Heze, Shandong, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jianfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
5
|
Wu D, Zhuang F, Wang J, Gao R, Zhang Q, Wang X, Zhang G, Fang M, Zhang Y, Li Y, Guan L, Gao Y. Metabolomics and Transcriptomics Revealed a Comprehensive Understanding of the Biochemical and Genetic Mechanisms Underlying the Color Variations in Chrysanthemums. Metabolites 2023; 13:742. [PMID: 37367900 PMCID: PMC10301146 DOI: 10.3390/metabo13060742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Flower color is an important characteristic of ornamental plants and is determined by various chemical components, including anthocyanin. In the present study, combined metabolomics and transcriptomics analysis was used to explore color variations in the chrysanthemums of three cultivars, of which the color of JIN is yellow, FEN is pink, and ZSH is red. A total of 29 different metabolites, including nine anthocyanins, were identified in common in the three cultivars. Compared with the light-colored cultivars, all of the nine anthocyanin contents were found to be up-regulated in the dark-colored ones. The different contents of pelargonidin, cyanidin, and their derivates were found to be the main reason for color variations. Transcriptomic analysis showed that the color difference was closely related to anthocyanin biosynthesis. The expression level of anthocyanin structural genes, including DFR, ANS, 3GT, 3MaT1, and 3MaT2, was in accordance with the flower color depth. This finding suggests that anthocyanins may be a key factor in color variations among the studied cultivars. On this basis, two special metabolites were selected as biomarkers to assist in chrysanthemum breeding for color selection.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fengchao Zhuang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jiarui Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ruiqi Gao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Qiunan Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiao Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guochao Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Minghui Fang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yang Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuhua Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Le Guan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yanqiang Gao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
6
|
Zhang Y, Su R, Yuan H, Zhou H, Jiangfang Y, Liu X, Luo J. Widely Targeted Volatilomics and Metabolomics Analysis Reveal the Metabolic Composition and Diversity of Zingiberaceae Plants. Metabolites 2023; 13:700. [PMID: 37367858 PMCID: PMC10301730 DOI: 10.3390/metabo13060700] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Zingiberaceae plants are widely used in the food and pharmaceutical industries; however, research on the chemical composition and interspecific differences in the metabolome and volatilome of Zingiberaceae plants is still limited. In this study, seven species of Zingiberaceae plants were selected, including Curcuma longa L., Zingiber officinale Rosc., Alpinia officinarum Hance, Alpinia tonkinensis Gagnep, Amomum tsaoko Crevost et Lemarie, Alpinia hainanensis K. Schum. and Amomum villosum Lour. Myristica fragrans Houtt. was also selected due to its flavor being similar to that of the Zingiberaceae plant. The metabolome and volatilome of selected plants were profiled by widely targeted approaches; 542 volatiles and 738 non-volatile metabolites were detected, and β-myrcene, α-phellandrene and α-cadinene were detected in all the selected plants, while chamigren, thymol, perilla, acetocinnamone and cis-α-bisabolene were exclusively detected in certain Zingiberaceae plants. Differential analysis showed that some terpenoids, such as cadalene, cadalene-1,3,5-triene, cadalene-1,3,8-triene and (E)-β-farnesene, and some lipids, including palmitic acid, linoleic acid and oleic acid were amongst the most varied compounds in Zingiberaceae plants. In conclusion, this study provided comprehensive metabolome and volatilome profiles for Zingiberaceae plants and revealed the metabolic differences between these plants. The results of this study could be used as a guide for the nutrition and flavor improvement of Zingiberaceae plants.
Collapse
Affiliation(s)
- Youjin Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Rongxiu Su
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Honglun Yuan
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Haihong Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Yiding Jiangfang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Xianqing Liu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Jie Luo
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Xie Z, Luo Y, Zhang C, An W, Zhou J, Jin C, Zhang Y, Zhao J. Integrated Metabolome and Transcriptome during Fruit Development Reveal Metabolic Differences and Molecular Basis between Lycium barbarum and Lycium ruthenicum. Metabolites 2023; 13:680. [PMID: 37367839 DOI: 10.3390/metabo13060680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Wolfberry (Lycium barbarum) is a traditional cash crop in China and is well-known worldwide for its outstanding nutritional and medicinal value. Lycium ruthenicum is a close relative of Lycium barbarum but differs significantly in size, color, flavor and nutritional composition. To date, the metabolic differences between the fruits of the two wolfberry varieties and the genetic basis behind them are unclear. Here, we compared metabolome and transcriptome data of two kinds of wolfberry fruits at five stages of development. Metabolome results show that amino acids, vitamins and flavonoids had the same accumulation pattern in various developmental stages of fruit but that Lycium ruthenicum accumulated more metabolites than Lycium barbarum during the same developmental stage, including L-glutamate, L-proline, L-serine, abscisic acid (ABA), sucrose, thiamine, naringenin and quercetin. Based on the metabolite and gene networks, many key genes that may be involved in the flavonoid synthesis pathway in wolfberry were identified, including PAL, C4H, 4CL, CHS, CHI, F3H, F3'H and FLS. The expression of these genes was significantly higher in Lycium ruthenicum than in Lycium barbarum, indicating that the difference in the expression of these genes was the main reason for the variation in flavonoid accumulation between Lycium barbarum and Lycium ruthenicum. Taken together, our results reveal the genetic basis of the difference in metabolomics between Lycium barbarum and Lycium ruthenicum and provide new insights into the flavonoid synthesis of wolfberry.
Collapse
Affiliation(s)
- Ziyang Xie
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yu Luo
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Changjian Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Wei An
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Jun Zhou
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Cheng Jin
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yuanyuan Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jianhua Zhao
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| |
Collapse
|
8
|
Wu Z, Guo Z, Wang K, Wang R, Fang C. Comparative Metabolomic Analysis Reveals the Role of OsHPL1 in the Cold-Induced Metabolic Changes in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2032. [PMID: 37653948 PMCID: PMC10221390 DOI: 10.3390/plants12102032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023]
Abstract
Cytochrome P450 (CYP74) family members participate in the generation of oxylipins and play essential roles in plant adaptation. However, the metabolic reprogramming mediated by CYP74s under cold stress remains largely unexplored. Herein, we report how cold-triggered OsHPL1, a member of the CYP74 family, modulates rice metabolism. Cold stress significantly induced the expression of OsHPL1 and the accumulation of OPDA (12-oxo-phytodienoic acid) and jasmonates in the wild-type (WT) plants. The absence of OsHPL1 attenuates OPDA accumulation to a low temperature. Then, we performed a widely targeted metabolomics study covering 597 structurally annotated compounds. In the WT and hpl1 plants, cold stress remodeled the metabolism of lipids and amino acids. Although the WT and hpl1 mutants shared over one hundred cold-affected differentially accumulated metabolites (DAMs), some displayed distinct cold-responding patterns. Furthermore, we identified 114 and 56 cold-responding DAMs, specifically in the WT and hpl1 mutants. In conclusion, our work characterized cold-triggered metabolic rewiring and the metabolic role of OsHPL1 in rice.
Collapse
Affiliation(s)
- Ziwei Wu
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- School of Tropical Crops, Hainan University, Haikou 570288, China
| | - Zhiyu Guo
- School of Tropical Crops, Hainan University, Haikou 570288, China
| | - Kemiao Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- School of Tropical Crops, Hainan University, Haikou 570288, China
| | - Rui Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- School of Tropical Crops, Hainan University, Haikou 570288, China
| | - Chuanying Fang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- School of Tropical Crops, Hainan University, Haikou 570288, China
| |
Collapse
|
9
|
Kumari M, Naidu S, Kumari B, Singh IK, Singh A. Comparative transcriptome analysis of Zea mays upon mechanical wounding. Mol Biol Rep 2023; 50:5319-5343. [PMID: 37155015 DOI: 10.1007/s11033-023-08429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Mechanical wounding (MW) is mainly caused due to high wind, sand, heavy rains and insect infestation, leading to damage to crop plants and an increase in the incidences of pathogen infection. Plants respond to MW by altering expression of genes, proteins, and metabolites that help them to cope up with the stress. METHODS AND RESULTS In order to characterize maize transcriptome in response to mechanical wounding, a microarray analysis was executed. The study revealed 407 differentially expressed genes (DEGs) (134 upregulated and 273 downregulated). The upregulated genes were engaged in protein synthesis, transcription regulation, phytohormone signaling-mediated by salicylic acid, auxin, jasmonates, biotic and abiotic stress including bacterial, insect, salt and endoplasmic reticulum stress, cellular transport, on the other hand downregulated genes were involved in primary metabolism, developmental processes, protein modification, catalytic activity, DNA repair pathways, and cell cycle. CONCLUSION The transcriptome data present here can be further utilized for understanding inducible transcriptional response during mechanical injury and their purpose in biotic and abiotic stress tolerance. Furthermore, future study concentrating on the functional characterization of the selected key genes (Bowman Bird trypsin inhibitor, NBS-LRR-like protein, Receptor-like protein kinase-like, probable LRR receptor-like ser/thr-protein kinase, Cytochrome P450 84A1, leucoanthocyanidin dioxygenase, jasmonate O-methyltransferase) and utilizing them for genetic engineering for crop improvement is strongly recommended.
Collapse
Affiliation(s)
- Megha Kumari
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
| | - Shrishti Naidu
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
| | - Babita Kumari
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Department of Botany, North-Eastern Hill University, Shillong, India
| | - Indrakant K Singh
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India.
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India.
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India.
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, New Delhi, India.
| |
Collapse
|