1
|
Wang Y, Wang Y, Zhang Z, Xu K, Fang Q, Wu X, Ma S. Molecular networking: An efficient tool for discovering and identifying natural products. J Pharm Biomed Anal 2025; 259:116741. [PMID: 40014895 DOI: 10.1016/j.jpba.2025.116741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/01/2025]
Abstract
Natural products (NPs), play a crucial role in drug development. However, the discovery of NPs is accidental, and conventional identification methods lack accuracy. To overcome these challenges, an increasing number of researchers are directing their attention to Molecular networking (MN). MN based on secondary mass spectrometry has become an important tool for the separation, purification and structural identification of NPs. However, most new tools are not well known. This review started with the most basic MN tool and explains it from the principle, workflow, and application. Then introduce the principles and workflows of the remaining eight new types of MN tools. The reliability of various MNs is mainly verified based on the application of phytochemistry and metabolomics. Subsequently, the principles and applications of 12 structural annotation tools are introduced. For the first time, the scope of 9 kinds of MN tools is compared horizontally, and 12 kinds of structured annotation tools are classified from the type of compound structure suitable for identification. The advantages and disadvantages of various tools are summarized, and make suggestions for future application directions and the development of computing tools in this review. MN tools are expected to enhance the efficiency of the discovery and identification in NPs.
Collapse
Affiliation(s)
- Yongjian Wang
- National Institutes for Food and Drug Control, Beijing 102629, China; Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Yadan Wang
- National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 100050, China
| | - Zhongmou Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Kailing Xu
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Qiufang Fang
- Shenyang Pharmaceutical University, Shenyang 110179, China
| | - Xianfu Wu
- National Institutes for Food and Drug Control, Beijing 102629, China.
| | - Shuangcheng Ma
- State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; Chinese Pharmacopoeia Commission, Beijing 100061, China.
| |
Collapse
|
2
|
Huang J, Mao H, Wu W, Jiang S, Chen L, Ma T, Zhai C, Meng Y. Identifying Antihepatocellular Carcinoma Compounds in Gansui Banxia Decoction Using Live Cell Adsorption. Drug Des Devel Ther 2025; 19:3437-3457. [PMID: 40322038 PMCID: PMC12049131 DOI: 10.2147/dddt.s513086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Purpose Gansui Banxia Decoction (GSBXD) is a traditional Chinese medicine formula for the treatment of hepatocellular carcinoma (HCC). Preliminary studies have identified the constituents and anticancer efficacy of GSBXD, but there is a gap in the screening of its lead compounds. Using live cell affinity combined with solid-phase extraction (LCA-SPE) and virtual screening and in vitro activity assays, we obtained 14 reliable potential lead compounds. Methods Coculturing H22 mouse HCC cells with GSBXD ethanol extract, isolating and purifying the bioactive fractions using LCA-SPE, and identifying the unknown bioactive components by ultraperformance liquid chromatography coupled with quadrupole time-of-flight full information tandem mass spectrometry (UPLC-QTOF-MSE) with the UNIFI information processing platform were performed. Network pharmacology and molecular docking techniques predicted the potential mechanisms of these compounds against HCC. The enzyme-linked immunosorbent assay was used to examine the effects of core compounds on the expression of p53 and Bcl-2 in vitro. Results Fourteen compounds screened from GSBXD using SPE-LCA-UPLC-QTOF-MSE may be the main bioactive components. Network pharmacology predictions suggested that protein kinases regulate Bcl-2 and p53 expression to trigger the apoptosis in cancer cells. Molecular docking identified three core compounds, namely, lactiflorin, schaftoside, and violanthin, which showed high affinities for the relevant proteins. Experimental verification confirmed their superior anticancer activity in vitro. Their anti-HCC effects likely involved in the upregulation of p53 and downregulation of Bcl-2 expression at the cellular level. Conclusion We developed a stable and accurate SPE-LCA method, which successfully isolated and characterized 14 potentially active compounds from GSBXD. They may improve HCC by promoting p53 expression and reducing Bcl-2 expression. This work lays a foundation for discovering lead compounds and exploring potential mechanisms in traditional Chinese medicine formulas.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Mice
- Animals
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/chemistry
- Drug Screening Assays, Antitumor
- Molecular Docking Simulation
- Cell Proliferation/drug effects
- Humans
- Dose-Response Relationship, Drug
- Solid Phase Extraction
- Adsorption
- Structure-Activity Relationship
- Tumor Cells, Cultured
- Cell Line, Tumor
- Medicine, Chinese Traditional
- Tumor Suppressor Protein p53/metabolism
- Apoptosis/drug effects
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Jiahao Huang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Hongyu Mao
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
- Sinopharm Harbin General Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Weidong Wu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Siliang Jiang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Lanru Chen
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Tianyu Ma
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Chunmei Zhai
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Yonghai Meng
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
3
|
Chen X, Wu Y, Wu S, Gu Y, Luo J, Kong L. Paper-based ligand fishing method for rapid screening and real-time capturing of α-glucosidase inhibitors from the Chinese herbs. J Pharm Biomed Anal 2024; 242:116037. [PMID: 38387130 DOI: 10.1016/j.jpba.2024.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/16/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Identifying medicinally relevant compounds from natural resources generally involves the tedious work of screening plants for the desired activity before capturing the bioactive molecules from them. In this work, we created a paper-based ligand fishing platform to vastly simplify the discovery process. This paper-based method exploits the enzymatic cascade reaction between α-glucosidase (GAA), glucose oxidase (GOx), and horseradish peroxidase (HRP), to simultaneously screen the plants and capture the GAA inhibitors from them. The designed test strip could capture ligands in tandem with screening the plants, and it features a very simply operation based on direct visual assessment. Multiple acylated flavonol glycosides from the leaves of Quercus variabilis Blume were newly found to possess GAA inhibitory activities, and they may be potential leads for new antidiabetic medications. Our study demonstrates the prospect of the newly discovered GAA ligands as potential bioactive ingredients as well as the utility of the paper-based ligand fishing method.
Collapse
Affiliation(s)
- Xinlin Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ying Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Sifang Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Jianguang Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
4
|
Kussmann M, Abe Cunha DH, Berciano S. Bioactive compounds for human and planetary health. Front Nutr 2023; 10:1193848. [PMID: 37545571 PMCID: PMC10400358 DOI: 10.3389/fnut.2023.1193848] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023] Open
Abstract
Bioactive compounds found in edible plants and foods are vital for human and planetary health, yet their significance remains underappreciated. These natural bioactives, as part of whole diets, ingredients, or supplements, can modulate multiple aspects of human health and wellness. Recent advancements in omic sciences and computational biology, combined with the development of Precision Nutrition, have contributed to the convergence of nutrition and medicine, as well as more efficient and affordable healthcare solutions that harness the power of food for prevention and therapy. Innovation in this field is crucial to feed a growing global population sustainably and healthily. This requires significant changes in our food system, spanning agriculture, production, distribution and consumption. As we are facing pressing planetary health challenges, investing in bioactive-based solutions is an opportunity to protect biodiversity and the health of our soils, waters, and the atmosphere, while also creating value for consumers, patients, communities, and stakeholders. Such research and innovation targets include alternative proteins, such as cellular agriculture and plant-derived protein; natural extracts that improve shelf-life as natural preservatives; upcycling of agricultural by-products to reduce food waste; and the development of natural alternatives to synthetic fertilizers and pesticides. Translational research and innovation in the field of natural bioactives are currently being developed at two levels, using a systems-oriented approach. First, at the biological level, the interplay between these compounds and the human host and microbiome is being elucidated through omics research, big data and artificial intelligence, to accelerate both discovery and validation. Second, at the ecosystem level, efforts are focused on producing diverse nutrient-rich, flavorful, and resilient, yet high-yield agricultural crops, and educating consumers to make informed choices that benefit both their health and the planet. Adopting a system-oriented perspective helps: unravel the intricate and dynamic relationships between bioactives, nutrition, and sustainability outcomes, harnessing the power of nature to promote human health and wellbeing; foster sustainable agriculture and protect the ecosystem. Interdisciplinary collaboration in this field is needed for a new era of research and development of practical food-based solutions for some of the most pressing challenges humanity and our planet are facing today.
Collapse
Affiliation(s)
- Martin Kussmann
- Kompetenzzentrum für Ernährung (KErn), Freising, Germany
- Kussmann Biotech GmbH, Nordkirchen, Germany
| | - David Henrique Abe Cunha
- Ideatomik Creative Industries, Botucatu, Brazil
- Institute of Biosciences, São Paulo State University, Rio Claro, Brazil
| | - Silvia Berciano
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| |
Collapse
|
5
|
de Carvalho AC, Lima CS, Torquato HFV, Domiciano AT, Silva SDC, de Abreu LM, Uemi M, Paredes-Gamero EJ, Vieira PC, Veiga TAM, de Medeiros LS. Chemodiversity and Anti-Leukemia Effect of Metabolites from Penicillium setosum CMLD 18. Metabolites 2022; 13:23. [PMID: 36676948 PMCID: PMC9864219 DOI: 10.3390/metabo13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Penicillium setosum represents a Penicillium species recently described, with little up-to-date information about its metabolic and biological potential. Due to this scenario, we performed chemical and biological studies of P. setosum CMLD18, a strain isolated from Swinglea glutinosa (Rutaceae). HRMS-MS guided dereplication strategies and anti-leukemia assays conducted the isolation and characterization of six compounds after several chromatographic procedures: 2-chloroemodic acid (2), 2-chloro-1,3,8-trihydroxy-6- (hydroxymethyl)-anthraquinone (7), 7-chloroemodin (8), bisdethiobis(methylthio)acetylaranotine (9), fellutanine C (10), and 4-methyl-5,6-diihydro-2H-pyran-2-one (15). From the assayed metabolites, (10) induced cellular death against Kasumi-1, a human leukemia cell line, as well as good selectivity for it, displaying promising cytotoxic activity. Here, the correct NMR signal assignments for (9) are also described. Therefore, this work highlights more detailed knowledge about the P. setosum chemical profile as well as its biological potential, offering prospects for obtaining natural products with anti-leukemia capabilities.
Collapse
Affiliation(s)
- Ana Calheiros de Carvalho
- Programa de Pós-Graduação em Biologia Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972-270, Brazil
| | - Cauê Santos Lima
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | | | - André Tarsis Domiciano
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | - Sebastião da Cruz Silva
- Instituto de Ciências Exatas, Universidade Federal do Sul e Sudeste do Pará, Marabá 68505-080, Brazil
| | | | - Miriam Uemi
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972-270, Brazil
| | - Edgar Julian Paredes-Gamero
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Paulo Cezar Vieira
- NPPNS, Department of BioMolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, Brazil
| | - Thiago André Moura Veiga
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972-270, Brazil
| | - Lívia Soman de Medeiros
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972-270, Brazil
| |
Collapse
|