1
|
Ferreira LC, Santana FM, Scagliusi SMM, Beckmann M, Mur LAJ. Omic characterisation of multi-component defences against the necrotrophic pathogen Pyrenophora tritici-repentis in wheat. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:347-361. [PMID: 39918991 PMCID: PMC11950905 DOI: 10.1111/plb.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/14/2024] [Indexed: 02/09/2025]
Abstract
Tan Spot disease is caused by the necrotrophic pathogen Pyrenophora tritici-repentis (Ptr) and poses a significant threat to global wheat production. Therefore, novel sources of resistance need to be identified, coupled with a fuller mechanistic understanding of host responses to Ptr. Herein, we characterise the interaction between a ToxA-positive Ptr strain and parental wheat lines from a multiparent advanced generation intercross (MAGIC) population. Genotypes displaying moderate resistance ('Robigus') or susceptibility ('Hereward') to Ptr challenge were identified and characterised through histological, metabolomic, and transcriptomic approaches. Histological investigations indicated the prominence of papilla-based defences in Robigus. Transcriptomic analyses could link this to the expression of barrier-related genes i.e. actin polymerisation, callose deposition, vesicle trafficking, and cellulose synthesis. Inhibiting actin polymerisation with cytochalasin E increased lesion numbers but did not augment lesion growth, suggesting the deployment of other defence mechanisms. These may be influenced by auxin, as its exogenous application exacerbated symptom development. Transcriptomic and metabolomic analyses in Hereward following challenge with Ptr suggested shifts in primary metabolism, affecting glycolysis, the TCA cycle, and the γ-aminobutyric acid (GABA) shunt. Activation of salicylic acid (SA)-associated genes, including NPR1 and WRKY33, was specific to Hereward, and exogenous SA increased susceptibility to Ptr in both genotypes. This study suggests barrier defences could be effective against Ptr as well as a lack of susceptibility factors like SA or the appropriate processing of IAA. These findings offer potential avenues for enhancing wheat resistance to Ptr.
Collapse
Affiliation(s)
- L. C. Ferreira
- Department of Life SciencesAberystwyth UniversityAberystwythWalesUK
- University of Florida, Everglades Research and Education CenterBelle GladeFLUSA
| | - F. M. Santana
- Laboratório de FitopatologiaPasso FundoRio Grande do SulBrazil
| | | | - M. Beckmann
- Department of Life SciencesAberystwyth UniversityAberystwythWalesUK
| | - L. A. J. Mur
- Department of Life SciencesAberystwyth UniversityAberystwythWalesUK
| |
Collapse
|
2
|
Schumaker B, Mortensen L, Klein RR, Mandal S, Dykes L, Gladman N, Rooney WL, Burson B, Klein PE. UV-induced reactive oxygen species and transcriptional control of 3-deoxyanthocyanidin biosynthesis in black sorghum pericarp. FRONTIERS IN PLANT SCIENCE 2024; 15:1451215. [PMID: 39435026 PMCID: PMC11491397 DOI: 10.3389/fpls.2024.1451215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
Black pericarp sorghum has notable value due to the biosynthesis of 3-deoxyanthocyanidins (3-DOAs), a rare class of bioactive polyphenols valued as antioxidant food additives and as bioactive compounds with cytotoxicity to human cancer cells. A metabolic and transcriptomic study was conducted to ascertain the cellular events leading to the activation of 3-DOA biosynthesis in black sorghum pericarp. Prolonged exposure of pericarp during grain maturation to high-fluence ultraviolet (UV) light resulted in elevated levels of reactive oxygen species (ROS) and the activation of 3-DOA biosynthesis in pericarp tissues. In conjunction with 3-DOA biosynthesis was the transcriptional activation of specific family members of early and late flavonoid biosynthesis pathway genes as well as the downstream activation of defense-related pathways. Promoter analysis of genes highly correlated with 3-DOA biosynthesis in black pericarp were enriched in MYB and HHO5/ARR-B motifs. Light microscopy studies of black pericarp tissues suggest that 3-DOAs are predominantly localized in the epicarp and are associated with the cell wall. A working model of UV-induced 3-DOA biosynthesis in black pericarp is proposed that shares features of plant immunity associated with pathogen attack or mechanical wounding. The present model depicts ROS accumulation, the transcriptional activation of receptor kinases and transcription factors (TFs) including NAC, WRKY, bHLH, AP2, and C2H2 Zinc finger domain. This study identified key biosynthetic and regulatory genes of 3-DOA accumulation in black pericarp and provided a deeper understanding of the gene networks and cellular events controlling this tissue-and genotype-specific trait.
Collapse
Affiliation(s)
- Brooklyn Schumaker
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Lauren Mortensen
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Robert R. Klein
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, United States
| | - Sabyasachi Mandal
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Linda Dykes
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Unit, Fargo, ND, United States
| | - Nicholas Gladman
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, United States
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - William L. Rooney
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Byron Burson
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, United States
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
3
|
Garg S, Nain P, Kumar A, Joshi S, Punetha H, Sharma PK, Siddiqui S, Alshaharni MO, Algopishi UB, Mittal A. Next generation plant biostimulants & genome sequencing strategies for sustainable agriculture development. Front Microbiol 2024; 15:1439561. [PMID: 39104588 PMCID: PMC11299335 DOI: 10.3389/fmicb.2024.1439561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 08/07/2024] Open
Abstract
The best environment for plant growth and development contains certain essential metabolites. A broad category of metabolites known as "plant biostimulants" (PBs) includes biomolecules such as proteins, carbohydrates, lipids, and other secondary metabolites related to groups of terpenes, specific nitrogen-containing compounds, and benzene ring-conjugated compounds. The formation of biomolecules depends on both biotic and abiotic factors, such as the release of PB by plants, animals, and microorganisms, or it can result from the control of temperature, humidity, and pressure in the atmosphere, in the case of humic substances (HSs). Understanding the genomic outputs of the concerned organism (may be plants or others than them) becomes crucial for identifying the underlying behaviors that lead to the synthesis of these complex compounds. For the purposes of achieving the objectives of sustainable agriculture, detailed research on PBs is essential because they aid in increasing yield and other growth patterns of agro-economic crops. The regulation of homeostasis in the plant-soil-microbe system for the survival of humans and other animals is mediated by the action of plant biostimulants, as considered essential for the growth of plants. The genomic size and gene operons for functional and regulation control have so far been revealed through technological implementations, but important gene annotations are still lacking, causing a delay in revealing the information. Next-generation sequencing techniques, such as nanopore, nanoball, and Illumina, are essential in troubleshooting the information gaps. These technical advancements have greatly expanded the candidate gene openings. The secondary metabolites being important precursors need to be studied in a much wider scale for accurate calculations of biochemical reactions, taking place inside and outside the synthesized living cell. The present review highlights the sequencing techniques to provide a foundation of opportunity generation for agricultural sustainability.
Collapse
Affiliation(s)
- Shivanshu Garg
- Department of Biochemistry, CBSH-GBPUA&T, Pantnagar, India
| | - Pooja Nain
- Department of Soil Science, College of Agriculture, GBPUA&T, Pantnagar, India
| | - Ashish Kumar
- Department of Microbiology, CBSH-GBPUA&T, Pantnagar, India
| | - Samiksha Joshi
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | | | - Pradeep Kumar Sharma
- Department of Environment Science, Graphic Era Deemed to be University, Dehradun, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | | | - Amit Mittal
- School of Allied Sciences, Graphic Era Hill University, Bhimtal, India
| |
Collapse
|
4
|
Mukherjee A, Maheshwari U, Sharma V, Sharma A, Kumar S. Functional insight into multi-omics-based interventions for climatic resilience in sorghum (Sorghum bicolor): a nutritionally rich cereal crop. PLANTA 2024; 259:91. [PMID: 38480598 DOI: 10.1007/s00425-024-04365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/13/2024] [Indexed: 03/25/2024]
Abstract
MAIN CONCLUSION The article highlights omics-based interventions in sorghum to combat food and nutritional scarcity in the future. Sorghum with its unique ability to thrive in adverse conditions, has become a tremendous highly nutritive, and multipurpose cereal crop. It is resistant to various types of climatic stressors which will pave its way to a future food crop. Multi-omics refers to the comprehensive study of an organism at multiple molecular levels, including genomics, transcriptomics, proteomics, and metabolomics. Genomic studies have provided insights into the genetic diversity of sorghum and led to the development of genetically improved sorghum. Transcriptomics involves analysing the gene expression patterns in sorghum under various conditions. This knowledge is vital for developing crop varieties with enhanced stress tolerance. Proteomics enables the identification and quantification of the proteins present in sorghum. This approach helps in understanding the functional roles of specific proteins in response to stress and provides insights into metabolic pathways that contribute to resilience and grain production. Metabolomics studies the small molecules, or metabolites, produced by sorghum, provides information about the metabolic pathways that are activated or modified in response to environmental stress. This knowledge can be used to engineer sorghum varieties with improved metabolic efficiency, ultimately leading to better crop yields. In this review, we have focused on various multi-omics approaches, gene expression analysis, and different pathways for the improvement of Sorghum. Applying omics approaches to sorghum research allows for a holistic understanding of its genome function. This knowledge is invaluable for addressing challenges such as climate change, resource limitations, and the need for sustainable agriculture.
Collapse
Affiliation(s)
- Ananya Mukherjee
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Uma Maheshwari
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Vishal Sharma
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Ankush Sharma
- Plant Genome Mapping Laboratory, Crop and Soil Science, University of Georgia, 111 Riverbend Road, Athens, GA, 30605, USA
| | - Satish Kumar
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, HP, 173230, India
| |
Collapse
|
5
|
Dubery IA, Nephali LP, Tugizimana F, Steenkamp PA. Data-Driven Characterization of Metabolome Reprogramming during Early Development of Sorghum Seedlings. Metabolites 2024; 14:112. [PMID: 38393004 PMCID: PMC10891503 DOI: 10.3390/metabo14020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Specialized metabolites are produced via discrete metabolic pathways. These small molecules play significant roles in plant growth and development, as well as defense against environmental stresses. These include damping off or seedling blight at a post-emergence stage. Targeted metabolomics was followed to gain insights into metabolome changes characteristic of different developmental stages of sorghum seedlings. Metabolites were extracted from leaves at seven time points post-germination and analyzed using ultra-high performance liquid chromatography coupled to mass spectrometry. Multivariate statistical analysis combined with chemometric tools, such as principal component analysis, hierarchical clustering analysis, and orthogonal partial least squares-discriminant analysis, were applied for data exploration and to reduce data dimensionality as well as for the selection of potential discriminant biomarkers. Changes in metabolome patterns of the seedlings were analyzed in the early, middle, and late stages of growth (7, 14, and 29 days post-germination). The metabolite classes were amino acids, organic acids, lipids, cyanogenic glycosides, hormones, hydroxycinnamic acid derivatives, and flavonoids, with the latter representing the largest class of metabolites. In general, the metabolite content showed an increase with the progression of the plant growth stages. Most of the differential metabolites were derived from tryptophan and phenylalanine, which contribute to innate immune defenses as well as growth. Quantitative analysis identified a correlation of apigenin flavone derivatives with growth stage. Data-driven investigations of these metabolomes provided new insights into the developmental dynamics that occur in seedlings to limit post-germination mortality.
Collapse
Affiliation(s)
- Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa; (L.P.N.); (F.T.); (P.A.S.)
| | | | | | | |
Collapse
|
6
|
Harrison C, Noleto-Dias C, Ruvo G, Hughes DJ, Smith DP, Mead A, Ward JL, Heuer S, MacGregor DR. The mechanisms behind the contrasting responses to waterlogging in black-grass ( Alopecurus myosuroides) and wheat ( Triticum aestivum). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23193. [PMID: 38417910 DOI: 10.1071/fp23193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/07/2024] [Indexed: 03/01/2024]
Abstract
Black-grass (Alopecurus myosuroides ) is one of the most problematic agricultural weeds of Western Europe, causing significant yield losses in winter wheat (Triticum aestivum ) and other crops through competition for space and resources. Previous studies link black-grass patches to water-retaining soils, yet its specific adaptations to these conditions remain unclear. We designed pot-based waterlogging experiments to compare 13 biotypes of black-grass and six cultivars of wheat. These showed that wheat roots induced aerenchyma when waterlogged whereas aerenchyma-like structures were constitutively present in black-grass. Aerial biomass of waterlogged wheat was smaller, whereas waterlogged black-grass was similar or larger. Variability in waterlogging responses within and between these species was correlated with transcriptomic and metabolomic changes in leaves of control or waterlogged plants. In wheat, transcripts associated with regulation and utilisation of phosphate compounds were upregulated and sugars and amino acids concentrations were increased. Black-grass biotypes showed limited molecular responses to waterlogging. Some black-grass amino acids were decreased and one transcript commonly upregulated was previously identified in screens for genes underpinning metabolism-based resistance to herbicides. Our findings provide insights into the different waterlogging tolerances of these species and may help to explain the previously observed patchiness of this weed's distribution in wheat fields.
Collapse
Affiliation(s)
- Christian Harrison
- Rothamsted Research, Protecting Crops and the Environment, Harpenden, Hertfordshire, UK
| | - Clarice Noleto-Dias
- Rothamsted Research, Plant Sciences for the Bioeconomy, Harpenden, Hertfordshire, UK
| | - Gianluca Ruvo
- Rothamsted Research, Plant Sciences for the Bioeconomy, Harpenden, Hertfordshire, UK
| | - David J Hughes
- Rothamsted Research, Intelligent Data Ecosystems, Harpenden, Hertfordshire, UK
| | - Daniel P Smith
- Rothamsted Research, Intelligent Data Ecosystems, Harpenden, Hertfordshire, UK
| | - Andrew Mead
- Rothamsted Research, Intelligent Data Ecosystems, Harpenden, Hertfordshire, UK
| | - Jane L Ward
- Rothamsted Research, Plant Sciences for the Bioeconomy, Harpenden, Hertfordshire, UK
| | - Sigrid Heuer
- International Consultant Crop Improvement and Food Security, Harpenden, UK
| | - Dana R MacGregor
- Rothamsted Research, Protecting Crops and the Environment, Harpenden, Hertfordshire, UK
| |
Collapse
|
7
|
Singh DP, Maurya S, Yerasu SR, Bisen MS, Farag MA, Prabha R, Shukla R, Chaturvedi KK, Farooqi MS, Srivastava S, Rai A, Sarma BK, Rai N, Behera TK. Metabolomics of early blight (Alternaria solani) susceptible tomato (Solanum lycopersicum) unfolds key biomarker metabolites and involved metabolic pathways. Sci Rep 2023; 13:21023. [PMID: 38030710 PMCID: PMC10687106 DOI: 10.1038/s41598-023-48269-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
Tomato (Solanum lycopersicum) is among the most important commercial horticultural crops worldwide. The crop quality and production is largely hampered due to the fungal pathogen Alternaria solani causing necrotrophic foliage early blight disease. Crop plants usually respond to the biotic challenges with altered metabolic composition and physiological perturbations. We have deciphered altered metabolite composition, modulated metabolic pathways and identified metabolite biomarkers in A. solani-challenged susceptible tomato variety Kashi Aman using Liquid Chromatography-Mass Spectrometry (LC-MS) based metabolomics. Alteration in the metabolite feature composition of pathogen-challenged (m/z 9405) and non-challenged (m/z 9667) plant leaves including 8487 infection-exclusive and 8742 non-infection exclusive features was observed. Functional annotation revealed putatively annotated metabolites and pathway mapping indicated their enrichment in metabolic pathways, biosynthesis of secondary metabolites, ubiquinone and terpenoid-quinones, brassinosteroids, steroids, terpenoids, phenylpropanoids, carotenoids, oxy/sphingolipids and metabolism of biotin and porphyrin. PCA, multivariate PLS-DA and OPLS-DA analysis showed sample discrimination. Significantly up regulated 481 and down regulated 548 metabolite features were identified based on the fold change (threshold ≥ 2.0). OPLS-DA model based on variable importance in projection (VIP scores) and FC threshold (> 2.0) revealed 41 up regulated discriminant metabolite features annotated as sphingosine, fecosterol, melatonin, serotonin, glucose 6-phosphate, zeatin, dihydrozeatin and zeatin-β-D-glucoside. Similarly, 23 down regulated discriminant metabolites included histidinol, 4-aminobutyraldehyde, propanoate, tyramine and linalool. Melatonin and serotonin in the leaves were the two indoleamines being reported for the first time in tomato in response to the early blight pathogen. Receiver operating characteristic (ROC)-based biomarker analysis identified apigenin-7-glucoside, uridine, adenosyl-homocysteine, cGMP, tyrosine, pantothenic acid, riboflavin (as up regulated) and adenosine, homocyctine and azmaline (as down regulated) biomarkers. These results could aid in the development of metabolite-quantitative trait loci (mQTL). Furthermore, stress-induced biosynthetic pathways may be the potential targets for modifications through breeding programs or genetic engineering for improving crop performance in the fields.
Collapse
Affiliation(s)
| | - Sudarshan Maurya
- ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | | | - Mansi Singh Bisen
- ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Ratna Prabha
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
| | - Renu Shukla
- Indian Council of Agricultural Research, New Delhi, 110012, India
| | | | - Md Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
- Indian Council of Agricultural Research, New Delhi, 110012, India
| | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Nagendra Rai
- ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | | |
Collapse
|
8
|
Cadena-Zamudio JD, Monribot-Villanueva JL, Pérez-Torres CA, Alatorre-Cobos F, Guerrero-Analco JA, Ibarra-Laclette E. Non-Targeted Metabolomic Analysis of Arabidopsis thaliana (L.) Heynh: Metabolic Adaptive Responses to Stress Caused by N Starvation. Metabolites 2023; 13:1021. [PMID: 37755301 PMCID: PMC10535036 DOI: 10.3390/metabo13091021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
As sessile organisms, plants develop the ability to respond and survive in changing environments. Such adaptive responses maximize phenotypic and metabolic fitness, allowing plants to adjust their growth and development. In this study, we analyzed the metabolic plasticity of Arabidopsis thaliana in response to nitrate deprivation by untargeted metabolomic analysis and using wild-type (WT) genotypes and the loss-of-function nia1/nia2 double mutant. Secondary metabolites were identified using seedlings grown on a hydroponic system supplemented with optimal or limiting concentrations of N (4 or 0.2 mM, respectively) and harvested at 15 and 30 days of age. Then, spectral libraries generated from shoots and roots in both ionization modes (ESI +/-) were compared. Totals of 3407 and 4521 spectral signals (m/z_rt) were obtained in the ESI+ and ESI- modes, respectively. Of these, approximately 50 and 65% were identified as differentially synthetized/accumulated. This led to the presumptive identification of 735 KEGG codes (metabolites) belonging to 79 metabolic pathways. The metabolic responses in the shoots and roots of WT genotypes at 4 mM of N favor the synthesis/accumulation of metabolites strongly related to growth. In contrast, for the nia1/nia2 double mutant (similar as the WT genotype at 0.2 mM N), metabolites identified as differentially synthetized/accumulated help cope with stress, regulating oxidative stress and preventing programmed cell death, meaning that metabolic responses under N starvation compromise growth to prioritize a defensive response.
Collapse
Affiliation(s)
- Jorge David Cadena-Zamudio
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| | - Juan Luis Monribot-Villanueva
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
- Consejo Nacional de Ciencia y Tecnología, Unidad de Bioquímica y Biología Molecular de Plantas, Merida 97205, Yucatan, Mexico;
| | - Fulgencio Alatorre-Cobos
- Consejo Nacional de Ciencia y Tecnología, Unidad de Bioquímica y Biología Molecular de Plantas, Merida 97205, Yucatan, Mexico;
- Centro de Investigación Científica de Yucatán (CICY), Unidad de Biotecnología, Merida 97205, Yucatan, Mexico
| | - José Antonio Guerrero-Analco
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| |
Collapse
|
9
|
Mashabela MD, Tugizimana F, Steenkamp PA, Piater LA, Dubery IA, Mhlongo MI. Metabolite profiling of susceptible and resistant wheat (Triticum aestivum) cultivars responding to Puccinia striiformis f. sp. tritici infection. BMC PLANT BIOLOGY 2023; 23:293. [PMID: 37264330 DOI: 10.1186/s12870-023-04313-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Puccinia striiformis f. sp. tritici (Pst) is an economically devasting disease that is prominent in cereal crops such as wheat (Triticum aestivum). The fungal pathogen can cause approximately 30-70% losses in crop productivity and yields. Pst has become difficult to manage due to its ease of transmission through wind dispersal over long distances, and intercontinental dispersal has been previously reported. The ease of transmission has resulted in further destruction because of new and more virulent strains infecting crops previously resistant to a different strain. RESULTS In this study, a liquid chromatography-mass spectrometry-based untargeted metabolomics approach, in combination with multivariate data analytical tools, was used to elucidate the mechanistic nature of the defence systems of a Pst-resistant and a susceptible wheat cultivar infected with P. striiformis. We also investigated the time-dependant metabolic reconfiguration of infected plants over a four-week period. The untargeted metabolomic analysis revealed a time-course metabolic reprogramming involving phenylpropanoids (majority flavonoids), amino acids, lipids, benzoic acids, TCA cycle intermediates and benzoxazinoids responding to Pst infection. Interestingly, the results do not show a linear course for the decrease and increase (up-/down-regulation) of said classes of metabolites, but rather the up- or down-regulation of specific metabolites in response to the pathogen infection. The resistant Koonap cultivar had an abundance of phenolic compounds such as rutin, isoorintin-7-O-glucoside and luteolin-6-C-hexoside-O-hexoside. These compounds showed a decrease over time in control Koonap plants compared to an increase in Pst-infected plants. These metabolites were down-regulated in the susceptible Gariep cultivar, which could serve as biomarkers for plant responses to biotic stress and resistance against Pst. CONCLUSIONS Overall, an LC-MS-based metabolomics approach allowed for the metabolic profiling and analysis of the impact of plant-pathogen interactions on the overall plant metabolome and provided a real-time snapshot of the differential significant metabolic perturbations occurring in wheat plants responding to the Pst pathogen. The Pst-resistant Koonap cultivar showed a rapid accumulation of defence metabolites in response to pathogen infection compared to the susceptible Gariep cultivar. These findings provide insight into the mechanistic biochemical nature of plant-microbe interactions and the prospects of metabolic engineering for improved plant tolerance and resistance to biotic stresses.
Collapse
Affiliation(s)
- Manamele Dannies Mashabela
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006, South Africa
| | - Fidele Tugizimana
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006, South Africa
- International Research and Development Division, Omnia Group, Ltd, Johannesburg, 2006, South Africa
| | - Paul Anton Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006, South Africa
| | - Lizelle Ann Piater
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006, South Africa
| | - Ian Augustus Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006, South Africa
| | - Msizi Innocent Mhlongo
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006, South Africa.
| |
Collapse
|
10
|
Draft Genome Sequences of Robbsia andropogonis Isolated from Sorghum bicolor Exhibiting Bacterial Leaf Stripe in Australia. Microbiol Resour Announc 2022; 11:e0024722. [PMID: 36129290 PMCID: PMC9583791 DOI: 10.1128/mra.00247-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Robbsia andropogonis causes leaf spots, streaks, or stripes on a wide range of commercially important crops. Here, we present the draft genome sequences of two isolates of R. andropogonis sourced from Sorghum bicolor displaying symptoms of bacterial leaf stripe disease in Australia.
Collapse
|
11
|
Pretorius CJ, Steenkamp PA, Tugizimana F, Piater LA, Dubery IA. Metabolomic Characterisation of Discriminatory Metabolites Involved in Halo Blight Disease in Oat Cultivars Caused by Pseudomonas syringae pv. coronafaciens. Metabolites 2022; 12:metabo12030248. [PMID: 35323691 PMCID: PMC8950619 DOI: 10.3390/metabo12030248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
The metabolome is the underlying biochemical layer of the phenotype and offers a functional readout of the cellular mechanisms involved in a biological system. Since metabolites are considered end-products of regulatory processes at a cellular level, their levels are considered the definitive response of the biological system to genetic or environmental variations. The metabolome thus serves as a metabolic fingerprint of the biochemical events that occur in a biological system under specific conditions. In this study, an untargeted metabolomics approach was applied to elucidate biochemical processes implicated in oat plant responses to Pseudomonas syringae pv. coronafaciens (Ps-c) infection, and to identify signatory markers related to defence responses and disease resistance against halo blight. Metabolic changes in two oat cultivars (“Dunnart” and “SWK001”) responding to Ps-c, were examined at the three-leaf growth stage and metabolome changes monitored over a four-day post-inoculation period. Hydromethanolic extracts were analysed using an ultra-high-performance liquid chromatography (UHPLC) system coupled to a high-definition mass spectrometer (MS) analytical platform. The acquired multi-dimensional data were processed using multivariate statistical analysis and chemometric modelling. The validated chemometric models indicated time- and cultivar-related metabolic changes, defining the host response to the bacterial inoculation. Further multivariate analyses of the data were performed to profile differential signatory markers, putatively associated with the type of launched defence response. These included amino acids, phenolics, phenolic amides, fatty acids, flavonoids, alkaloids, terpenoids, lipids, saponins and plant hormones. Based on the results, metabolic alterations involved in oat defence responses to Ps-c were elucidated and key signatory metabolic markers defining the defence metabolome were identified. The study thus contributes toward a more holistic understanding of the oat metabolism under biotic stress.
Collapse
|
12
|
Ashraf MF, Hou D, Hussain Q, Imran M, Pei J, Ali M, Shehzad A, Anwar M, Noman A, Waseem M, Lin X. Entailing the Next-Generation Sequencing and Metabolome for Sustainable Agriculture by Improving Plant Tolerance. Int J Mol Sci 2022; 23:651. [PMID: 35054836 PMCID: PMC8775971 DOI: 10.3390/ijms23020651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Crop production is a serious challenge to provide food for the 10 billion individuals forecasted to live across the globe in 2050. The scientists' emphasize establishing an equilibrium among diversity and quality of crops by enhancing yield to fulfill the increasing demand for food supply sustainably. The exploitation of genetic resources using genomics and metabolomics strategies can help generate resilient plants against stressors in the future. The innovation of the next-generation sequencing (NGS) strategies laid the foundation to unveil various plants' genetic potential and help us to understand the domestication process to unmask the genetic potential among wild-type plants to utilize for crop improvement. Nowadays, NGS is generating massive genomic resources using wild-type and domesticated plants grown under normal and harsh environments to explore the stress regulatory factors and determine the key metabolites. Improved food nutritional value is also the key to eradicating malnutrition problems around the globe, which could be attained by employing the knowledge gained through NGS and metabolomics to achieve suitability in crop yield. Advanced technologies can further enhance our understanding in defining the strategy to obtain a specific phenotype of a crop. Integration among bioinformatic tools and molecular techniques, such as marker-assisted, QTLs mapping, creation of reference genome, de novo genome assembly, pan- and/or super-pan-genomes, etc., will boost breeding programs. The current article provides sequential progress in NGS technologies, a broad application of NGS, enhancement of genetic manipulation resources, and understanding the crop response to stress by producing plant metabolites. The NGS and metabolomics utilization in generating stress-tolerant plants/crops without deteriorating a natural ecosystem is considered a sustainable way to improve agriculture production. This highlighted knowledge also provides useful research that explores the suitable resources for agriculture sustainability.
Collapse
Affiliation(s)
- Muhammad Furqan Ashraf
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Muhammad Imran
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Jialong Pei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Mohsin Ali
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Aamar Shehzad
- Maize Research Station, AARI, Faisalabad 38000, Pakistan;
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Muhammad Waseem
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| |
Collapse
|
13
|
Zeiss DR, Steenkamp PA, Piater LA, Dubery IA. Metabolomic Evaluation of Ralstonia solanacearum Cold Shock Protein Peptide (csp22)-Induced Responses in Solanum lycopersicum. FRONTIERS IN PLANT SCIENCE 2022; 12:803104. [PMID: 35069661 PMCID: PMC8780328 DOI: 10.3389/fpls.2021.803104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Ralstonia solanacearum, the causal agent of bacterial wilt, is one of the most destructive bacterial plant pathogens. This is linked to its evolutionary adaptation to evade host surveillance during the infection process since many of the pathogen's associated molecular patterns escape recognition. However, a 22-amino acid sequence of R. solanacearum-derived cold shock protein (csp22) was discovered to elicit an immune response in the Solanaceae. Using untargeted metabolomics, the effects of csp22-elicitation on the metabolome of Solanum lycopersicum leaves were investigated. Additionally, the study set out to discover trends that may suggest that csp22 inoculation bestows enhanced resistance on tomato against bacterial wilt. Results revealed the redirection of metabolism toward the phenylpropanoid pathway and sub-branches thereof. Compared to the host response with live bacteria, csp22 induced a subset of the discriminant metabolites, but also metabolites not induced in response to R. solanacearum. Here, a spectrum of hydroxycinnamic acids (especially ferulic acid), their conjugates and derivatives predominated as signatory biomarkers. From a metabolomics perspective, the results support claims that csp22 pre-treatment of tomato plants elicits increased resistance to R. solanacearum infection and contribute to knowledge on plant immune systems operation at an integrative level. The functional significance of these specialized compounds may thus support a heightened state of defense that can be applied to ward off attacking pathogens or toward priming of defense against future infections.
Collapse
|
14
|
Pandohee J, Kyereh E, Kulshrestha S, Xu B, Mahomoodally MF. Review of the recent developments in metabolomics-based phytochemical research. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34672234 DOI: 10.1080/10408398.2021.1993127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phytochemicals are important bioactive components present in natural products. Although the health benefits of many food products are well-known and accepted as a common knowledge, the identity of the main bioactive molecules and the mechanism by which they interact in the body of human are often unknown. It was only in the last 30 years when the field of metabolomics had matured that the identification of such molecules with bioactivity has been made possible through the development of instruments to separate and computational techniques to characterize complex samples. This in turn has enabled in vitro studies to quantify the biological activity of the respective phytochemical either in mice models or in humans. In this review, the importance of key dietary phytochemicals such as phenolic acids, flavonoids, carotenoids, resveratrol, curcumin, and capsaicinoids are discussed together with their potential functions for human health. Untargeted metabolomics, in particular, liquid chromatography mass spectrometry, is the most used method to isolate, identify and profile bioactive compounds in the study of phytochemicals in foods. The application of metabolomics in drug discovery is a common practice nowadays and has boosted the drug and/or supplement manufacturing sector.HighlightsPhytochemicals are beneficial compounds for human healthPhytochemicals are plant-based bioactive and obtainable from natural productsUntargeted metabolomics has boosted the discovery of phytochemicals from foodTargeted metabolomics is key in the authentication and screening of phytochemicalsMetabolomics of phytochemicals is reshaping the road to drug and supplement manufacture.
Collapse
Affiliation(s)
- Jessica Pandohee
- Centre for Crop and Disease Management, Curtin University, Perth, Western Australia, Australia.,Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | | | - Saurabh Kulshrestha
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | | |
Collapse
|
15
|
Hamany Djande CY, Piater LA, Steenkamp PA, Tugizimana F, Dubery IA. A Metabolomics Approach and Chemometric Tools for Differentiation of Barley Cultivars and Biomarker Discovery. Metabolites 2021; 11:metabo11090578. [PMID: 34564394 PMCID: PMC8466441 DOI: 10.3390/metabo11090578] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/04/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
One of the ultimate goals of plant breeding is the development of new crop cultivars capable of withstanding increasing environmental stresses, to sustain the constantly growing population and economic demands. Investigating the chemical composition of the above and underground tissues of cultivars is crucial for the understanding of common and specific traits thereof. Using an untargeted metabolomics approach together with appropriate chemometrics tools, the differential metabolite profiles of leaf and root extracts from five cultivars of barley (‘Erica’, ‘Elim’, ‘Hessekwa’, ‘S16’ and ‘Agulhas’) were explored and potential signatory biomarkers were revealed. The study was conducted on seedlings grown for 21 days under identical controlled conditions. An ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) was employed to analyse hydromethanolic leaf and root extracts of barley cultivars. Furthermore, unsupervised and supervised learning algorithms were applied to mine the generated data and to pinpoint cultivar-specific metabolites. Among all the classes of metabolites annotated, phenolic acids and derivatives formed the largest group and also represented the most discriminatory metabolites. In roots, saponarin, an important allelochemical differentially distributed across cultivars, was the only flavonoid annotated. The application of an untargeted metabolomics approach in phenotyping grain crops such as barley was demonstrated, and the metabolites responsible for differentiating between the selected cultivars were revealed. The study provides insights into the chemical architecture of barley, an agro-economically relevant cereal crop; and reiterates the importance of metabolomics tools in plant breeding practices for crop improvement.
Collapse
|
16
|
Crespi E, Burnap R, Chen J, Das M, Gassman N, Rosa E, Simmons R, Wada H, Wang ZQ, Xiao J, Yang B, Yin J, Goldstone JV. Resolving the Rules of Robustness and Resilience in Biology Across Scales. Integr Comp Biol 2021; 61:2163-2179. [PMID: 34427654 DOI: 10.1093/icb/icab183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022] Open
Abstract
Why do some biological systems and communities persist while others fail? Robustness, a system's stability, and resilience, the ability to return to a stable state, are key concepts that span multiple disciplines within and outside the biological sciences. Discovering and applying common rules that govern the robustness and resilience of biological systems is a critical step toward creating solutions for species survival in the face of climate change, as well as the for the ever-increasing need for food, health, and energy for human populations. We propose that network theory provides a framework for universal scalable mathematical models to describe robustness and resilience and the relationship between them, and hypothesize that resilience at lower organization levels contribute to robust systems. Insightful models of biological systems can be generated by quantifying the mechanisms of redundancy, diversity, and connectivity of networks, from biochemical processes to ecosystems. These models provide pathways towards understanding how evolvability can both contribute to and result from robustness and resilience under dynamic conditions. We now have an abundance of data from model and non-model systems and the technological and computational advances for studying complex systems. Several conceptual and policy advances will allow the research community to elucidate the rules of robustness and resilience. Conceptually, a common language and data structure that can be applied across levels of biological organization needs to be developed. Policy advances such as cross-disciplinary funding mechanisms, access to affordable computational capacity, and the integration of network theory and computer science within the standard biological science curriculum will provide the needed research environments. This new understanding of biological systems will allow us to derive ever more useful forecasts of biological behaviors and revolutionize the engineering of biological systems that can survive changing environments or disease, navigate the deepest oceans, or sustain life throughout the solar system.
Collapse
Affiliation(s)
- Erica Crespi
- School of Biological Sciences, Washington State University
| | - Robert Burnap
- Microbiology and Molecular Genetics, Oklahoma State University
| | - Jing Chen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology
| | | | - Epaminondas Rosa
- Department of Physics and School of Biological Sciences, Illinois State University
| | | | - Haruka Wada
- Department of Biological Sciences, Auburn University
| | - Zhen Q Wang
- Department of Biological Sciences, University at Buffalo
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine
| | - Bing Yang
- Division of Plant Sciences, University of Missouri
| | - John Yin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison
| | | |
Collapse
|
17
|
Mhlongo MI, Piater LA, Steenkamp PA, Labuschagne N, Dubery IA. Metabolomic Evaluation of Tissue-Specific Defense Responses in Tomato Plants Modulated by PGPR-Priming against Phytophthora capsici Infection. PLANTS 2021; 10:plants10081530. [PMID: 34451575 PMCID: PMC8400099 DOI: 10.3390/plants10081530] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) can stimulate disease suppression through the induction of an enhanced state of defense readiness. Here, untargeted ultra-high performance liquid chromatography–mass spectrometry (UHPLC–MS) and targeted ultra-high performance liquid chromatography coupled to triple-quadrupole mass spectrometry (UHPLC–QqQ-MS) were used to investigate metabolic reprogramming in tomato plant tissues in response to priming by Pseudomonas fluorescens N04 and Paenibacillus alvei T22 against Phytophthora capsici. Roots were treated with the two PGPR strains prior to stem inoculation with Ph. capsici. Metabolites were methanol-extracted from roots, stems and leaves at two–eight days post-inoculation. Targeted analysis by UHPLC–QqQ-MS allowed quantification of aromatic amino acids and phytohormones. For untargeted analysis, UHPLC–MS data were chemometrically processed to determine signatory biomarkers related to priming against Ph. capsici. The aromatic amino acid content was differentially reprogrammed in Ps. fluorescens and Pa. alvei primed plants responding to Ph. capsici. Furthermore, abscisic acid and methyl salicylic acid were found to be major signaling molecules in the tripartite interaction. LC–MS metabolomics analysis showed time-dependent metabolic changes in the primed-unchallenged vs. primed-challenged tissues. The annotated metabolites included phenylpropanoids, benzoic acids, glycoalkaloids, flavonoids, amino acids, organic acids, as well as oxygenated fatty acids. Tissue-specific reprogramming across diverse metabolic networks in roots, stems and leaves was also observed, which demonstrated that PGPR priming resulted in modulation of the defense response to Ph. capsici infection.
Collapse
Affiliation(s)
- Msizi I. Mhlongo
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (M.I.M.); (L.A.P.); (P.A.S.)
| | - Lizelle A. Piater
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (M.I.M.); (L.A.P.); (P.A.S.)
| | - Paul A. Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (M.I.M.); (L.A.P.); (P.A.S.)
| | - Nico Labuschagne
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
| | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (M.I.M.); (L.A.P.); (P.A.S.)
- Correspondence: ; Tel.: +27-11-559-2401
| |
Collapse
|
18
|
Ackerman A, Wenndt A, Boyles R. The Sorghum Grain Mold Disease Complex: Pathogens, Host Responses, and the Bioactive Metabolites at Play. FRONTIERS IN PLANT SCIENCE 2021; 12:660171. [PMID: 34122480 PMCID: PMC8192977 DOI: 10.3389/fpls.2021.660171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Grain mold is a major concern in sorghum [Sorghum bicolor (L.) Moench] production systems, threatening grain quality, safety, and nutritional value as both human food and livestock feed. The crop's nutritional value, environmental resilience, and economic promise poise sorghum for increased acreage, especially in light of the growing pressures of climate change on global food systems. In order to fully take advantage of this potential, sorghum improvement efforts and production systems must be proactive in managing the sorghum grain mold disease complex, which not only jeopardizes agricultural productivity and profitability, but is also the culprit of harmful mycotoxins that warrant substantial public health concern. The robust scholarly literature from the 1980s to the early 2000s yielded valuable insights and key comprehensive reviews of the grain mold disease complex. Nevertheless, there remains a substantial gap in understanding the complex multi-organismal dynamics that underpin the plant-pathogen interactions involved - a gap that must be filled in order to deliver improved germplasm that is not only capable of withstanding the pressures of climate change, but also wields robust resistance to disease and mycotoxin accumulation. The present review seeks to provide an updated perspective of the sorghum grain mold disease complex, bolstered by recent advances in the understanding of the genetic and the biochemical interactions among the fungal pathogens, their corresponding mycotoxins, and the sorghum host. Critical components of the sorghum grain mold disease complex are summarized in narrative format to consolidate a collection of important concepts: (1) the current state of sorghum grain mold in research and production systems; (2) overview of the individual pathogens that contribute to the grain mold complex; (3) the mycotoxin-producing potential of these pathogens on sorghum and other substrates; and (4) a systems biology approach to the understanding of host responses.
Collapse
Affiliation(s)
- Arlyn Ackerman
- Cereal Grains Breeding and Genetics, Pee Dee Research and Education Center, Department of Plant & Environmental Sciences, Clemson University, Florence, SC, United States
| | - Anthony Wenndt
- Plant Pathology and Plant-Microbe Biology, The School of Integrated Plant Sciences, Cornell University, Ithaca, NY, United States
| | - Richard Boyles
- Cereal Grains Breeding and Genetics, Pee Dee Research and Education Center, Department of Plant & Environmental Sciences, Clemson University, Florence, SC, United States
| |
Collapse
|
19
|
Zeiss DR, Piater LA, Dubery IA. Hydroxycinnamate Amides: Intriguing Conjugates of Plant Protective Metabolites. TRENDS IN PLANT SCIENCE 2021; 26:184-195. [PMID: 33036915 DOI: 10.1016/j.tplants.2020.09.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 05/09/2023]
Abstract
The syntheses of aromatic monoamines and aliphatic polyamines (PAs) are responsive to environmental stresses, with some modulating aspects of plant defense. Conjugation of amines to hydroxycinnamic acids (HCAs) generates HCA amides (HCAAs), with the conjugates possessing properties from both compounds. Conjugation may reduce the polarity of the resulting metabolite and assist in translocation, stability, and compartmentalization. Recent metabolomic insights identified HCAAs as biomarkers during plant-pathogen interactions, supporting a functional role in defense. The conjugates may contribute to regulation of the dynamic metabolic pool of hydroxycinnamates. This review highlights the occurrence of aromatic amines (AAs) and PAs in stress metabolism, conjugation to HCAs, and the roles of HCAAs during host defense, adding emphasis on their involvement in hydrogen peroxide (H2O2) production and cell-wall strengthening.
Collapse
Affiliation(s)
- Dylan R Zeiss
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Lizelle A Piater
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Ian A Dubery
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park, Johannesburg, South Africa.
| |
Collapse
|
20
|
Nephali L, Moodley V, Piater L, Steenkamp P, Buthelezi N, Dubery I, Burgess K, Huyser J, Tugizimana F. A Metabolomic Landscape of Maize Plants Treated With a Microbial Biostimulant Under Well-Watered and Drought Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:676632. [PMID: 34149776 PMCID: PMC8210945 DOI: 10.3389/fpls.2021.676632] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/30/2021] [Indexed: 05/16/2023]
Abstract
Microbial plant biostimulants have been successfully applied to improve plant growth, stress resilience and productivity. However, the mechanisms of action of biostimulants are still enigmatic, which is the main bottleneck for the fully realization and implementation of biostimulants into the agricultural industry. Here, we report the elucidation of a global metabolic landscape of maize (Zea mays L) leaves in response to a microbial biostimulant, under well-watered and drought conditions. The study reveals that the increased pool of tricarboxylic acid (TCA) intermediates, alterations in amino acid levels and differential changes in phenolics and lipids are key metabolic signatures induced by the application of the microbial-based biostimulant. These reconfigurations of metabolism gravitate toward growth-promotion and defense preconditioning of the plant. Furthermore, the application of microbial biostimulant conferred enhanced drought resilience to maize plants via altering key metabolic pathways involved in drought resistance mechanisms such as the redox homeostasis, strengthening of the plant cell wall, osmoregulation, energy production and membrane remodeling. For the first time, we show key molecular events, metabolic reprogramming, activated by a microbial biostimulant for plant growth promotion and defense priming. Thus, these elucidated metabolomic insights contribute to ongoing efforts in decoding modes of action of biostimulants and generating fundamental scientific knowledgebase that is necessary for the development of the plant biostimulants industry, for sustainable food security.
Collapse
Affiliation(s)
- Lerato Nephali
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Venessa Moodley
- International Research and Development Division, Omnia Group, Ltd., Johannesburg, South Africa
| | - Lizelle Piater
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Paul Steenkamp
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Nombuso Buthelezi
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Ian Dubery
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Karl Burgess
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johan Huyser
- International Research and Development Division, Omnia Group, Ltd., Johannesburg, South Africa
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
- International Research and Development Division, Omnia Group, Ltd., Johannesburg, South Africa
- *Correspondence: Fidele Tugizimana,
| |
Collapse
|
21
|
Alberton D, Valdameri G, Moure VR, Monteiro RA, Pedrosa FDO, Müller-Santos M, de Souza EM. What Did We Learn From Plant Growth-Promoting Rhizobacteria (PGPR)-Grass Associations Studies Through Proteomic and Metabolomic Approaches? FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.607343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Plant growth stimulation by microorganisms that interact in a mutually beneficial manner remains poorly understood. Understanding the nature of plant-bacteria interactions may open new routes for plant productivity enhancement, especially cereal crops consumed by humans. Proteomic and metabolomic analyses are particularly useful for elucidating these mechanisms. A complete depiction of these mechanisms will prompt researchers to develop more efficient plant-bacteria associations. The success of microorganisms as biofertilizers may replace the current massive use of chemical fertilizers, mitigating many environmental and economic issues. In this review, we discuss the recent advances and current state of the art in proteomics and metabolomics studies involving grass-bacteria associations. We also discuss essential subjects involved in the bacterial plant-growth promotion, such, nitrogen fixation, plant stress, defense responses, and siderophore production.
Collapse
|
22
|
Concurrent Metabolic Profiling and Quantification of Aromatic Amino Acids and Phytohormones in Solanum lycopersicum Plants Responding to Phytophthora capsici. Metabolites 2020; 10:metabo10110466. [PMID: 33207638 PMCID: PMC7696014 DOI: 10.3390/metabo10110466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/05/2023] Open
Abstract
Pathogenic microorganisms account for large production losses in the agricultural sector. Phytophthora capsici is an oomycete that causes blight and fruit rot in important crops, especially those in the Solanaceae family. P. capsici infection is difficult to control due to genetic diversity, arising from sexual reproduction, and resistant spores that remain dormant in soil. In this study, the metabolomics of tomato plants responding to infection by P. capsici were investigated. Non-targeted metabolomics, based on liquid chromatography coupled to mass spectrometry (LC-MS), were used with multivariate data analyses to investigate time-dependent metabolic reprogramming in the roots, stems, and leaves of stem-infected plants, over an 8 day period. In addition, phytohormones and amino acids were determined using quantitative LC-MS. Methyl salicylate and 1-aminocyclopropane-1-carboxylate were detected as major signalling molecules in the defensive response to P. capsici. As aromatic amino acid precursors of secondary metabolic pathways, both phenylalanine and tryptophan showed a continuous increase over time in all tissues, whereas tyrosine peaked at day 4. Non-targeted metabolomic analysis revealed phenylpropanoids, benzoic acids, glycoalkaloids, flavonoids, amino acids, organic acids, and fatty acids as the major classes of reprogrammed metabolites. Correlation analysis showed that metabolites derived from the same pathway, or synthesised by different pathways, could either have a positive or negative correlation. Furthermore, roots, stems, and leaves showed contrasting time-dependent metabolic reprogramming, possibly related to the biotrophic vs. necrotrophic life-stages of the pathogen, and overlapping biotic and abiotic stress signaling. As such, the targeted and untargeted approaches complemented each other, to provide a detailed view of key time-dependent metabolic changes, occurring in both the asymptomatic and symptomatic stages of infection.
Collapse
|
23
|
Masike K, de Villiers A, Hoffman EW, Stander MA. Application of Metabolomics Tools to Determine Possible Biomarker Metabolites Linked to Leaf Blackening in Protea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12595-12605. [PMID: 32936621 DOI: 10.1021/acs.jafc.0c03607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The postharvesting disorder leaf blackening is the main cause of product rejection in Protea during export. In this study, we report an investigation into metabolites associated with leaf blackening in Protea species. Methanol extracts of leaf and involucral bract tissue were analyzed by liquid chromatography hyphenated to photodiode array and high-resolution mass spectrometry (LC-PDA-HRMS), where 116 features were annotated. Analytical data obtained from 37 Protea species, selections, and hybrids were investigated using metabolomics tools, which showed that stems susceptible to leaf blackening cluster together and contained features identified as benzenetriol- and/or hydroquinone-derived metabolites. On the other hand, species, selections, and cultivars not prone to blackening were linked to metabolites with known protective properties against biotic and abiotic stressors. During the browning process, susceptible cultivars also produce these protective metabolites, yet at innately low levels, which may render these species and cultivars more vulnerable to blackening. Metabolites that were found to be correlated to the instigation of the browning process, all comprising benzenetriol- and hydroquinone-glycoside derivatives, are highlighted to provide preliminary insights to guide the development of new Protea cultivars not susceptible to leaf blackening.
Collapse
Affiliation(s)
- Keabetswe Masike
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| | - André de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| | - Eleanor W Hoffman
- Department of Horticultural Science, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
- School of Agriculture and Food Science, University of Queensland, St. Lucia 4072, Australia
| | - Maria A Stander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
- Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| |
Collapse
|
24
|
Mareya CR, Tugizimana F, Steenkamp P, Piater L, Dubery IA. Lipopolysaccharides trigger synthesis of the allelochemical sorgoleone in cell cultures of Sorghum bicolor. PLANT SIGNALING & BEHAVIOR 2020; 15:1796340. [PMID: 32727268 PMCID: PMC8550536 DOI: 10.1080/15592324.2020.1796340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The use of plant cell suspension culture systems has demonstrated to be highly suitable for metabolomics investigations of inducible defense responses. Here we report on sorghum cell suspension cultures that were elicited with purified lipopolysaccharides from the sorghum pathogen Burkholderia andropogonis, to activate metabolic pathways involved in the chemical defenses of the plant. Metabolomic analysis using liquid chromatography coupled to mass spectrometry identified a resorcinol phenolic lipid, annotated as sorgoleone, as one of the biomarkers associated with the LPS-induced response. Sorgoleone is a semiochemical and an allelochemical, synthesized by specialized root hair cells and the major component of the hydrophobic root exudate of sorghum. Its detection in undifferentiated cells might indicate a previously undescribed role for this phytochemical in plant defense responses.
Collapse
Affiliation(s)
- Charity R Mareya
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Fidele Tugizimana
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Paul Steenkamp
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Lizelle Piater
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Ian A Dubery
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
25
|
Ammar S, Abidi J, Vlad Luca S, Boumendjel M, Skalicka-Woźniak K, Bouaziz M. Untargeted metabolite profiling and phytochemical analysis based on RP-HPLC-DAD-QTOF-MS and MS/MS for discovering new bioactive compounds in Rumex algeriensis flowers and stems. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:616-635. [PMID: 32160653 DOI: 10.1002/pca.2928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/17/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Natural products with distinctive pharmaceutical activities are considered as the main source of new herbal drugs, functional foods and cosmetic additives. Rumex algeriensis is an endemic medicinal plant with no accessible information about its chemical profile and biological activities. OBJECTIVE In the quest for new sources of biologically-active compounds, we intended in the present work to undertake a comprehensive characterisation of phytochemical compounds from Rumex algeriensis flowers and stems hydro-methanolic extract. METHODOLOGY Chemical profiles were evaluated by a rapid analytical method reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to electrospray ionisation-quadrupole-time-of-flight mass spectrometry (ESI-QTOF-MS) and tandem mass spectrometry (MS/MS) using negative and positive ions modes. RESULTS In this work, 44 bioactive compounds were tentatively identified using high mass accuracy data and confirmed by MS/MS experiments, among which five compounds were reported for the first time in the Polygonaceae family. These compounds were classified as sugars, hydroxybenzoic acids, hydroxycinnamic acids, flavonols, flavanones, flavone, flavanols, condensed tannins, hydrolysable tannins and their conjugated derivatives. CONCLUSIONS The obtained results highlighted that Rumex algeriensis, even though undervalued and unexplored, contributes to the preclinical knowledge that could be considered as a renewable source of nutraceutical compounds that may be exploited in novel herbal medicinal products, in the food, pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Sonda Ammar
- Laboratoire d'Electrochimie et Environnement, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Jouda Abidi
- Laboratoire d'Electrochimie et Environnement, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Mahieddine Boumendjel
- Laboratoire Biochimie et Toxicologie Environnementale, Université Badji Mokhtar-Annaba, Annaba, Algeria
| | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products Chemistry, Department of Pharmacognosy, Medical University of Lublin, Lublin, Poland
| | - Mohamed Bouaziz
- Laboratoire d'Electrochimie et Environnement, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
26
|
Metabolomics: A Tool for Cultivar Phenotyping and Investigation of Grain Crops. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10060831] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The quality of plants is often enhanced for diverse purposes such as improved resistance to environmental pressures, better taste, and higher yields. Considering the world’s dependence on plants (nutrition, medicine, or biofuel), developing new cultivars with superior characteristics is of great importance. As part of the ‘omics’ approaches, metabolomics has been employed to investigate the large number of metabolites present in plant systems under well-defined environmental conditions. Recent advances in the metabolomics field have greatly expanded our understanding of plant metabolism, largely driven by potential application to agricultural systems. The current review presents the workflow for plant metabolome analyses, current knowledge, and future directions of such research as determinants of cultivar phenotypes. Furthermore, the value of metabolome analyses in contemporary crop science is illustrated. Here, metabolomics has provided valuable information in research on grain crops and identified significant biomarkers under different conditions and/or stressors. Moreover, the value of metabolomics has been redefined from simple biomarker identification to a tool for discovering active drivers involved in biological processes. We illustrate and conclude that the rapid advances in metabolomics are driving an explosion of information that will advance modern breeding approaches for grain crops and address problems associated with crop productivity and sustainable agriculture.
Collapse
|
27
|
Metabolic Profiling of PGPR-Treated Tomato Plants Reveal Priming-Related Adaptations of Secondary Metabolites and Aromatic Amino Acids. Metabolites 2020; 10:metabo10050210. [PMID: 32443694 PMCID: PMC7281251 DOI: 10.3390/metabo10050210] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Plant growth–promoting rhizobacteria (PGPR) are beneficial microbes in the rhizosphere that can directly or indirectly stimulate plant growth. In addition, some can prime plants for enhanced defense against a broad range of pathogens and insect herbivores. In this study, four PGPR strains (Pseudomonas fluorescens N04, P. koreensis N19, Paenibacillus alvei T19, and Lysinibacillus sphaericus T22) were used to induce priming in Solanum lycopersicum (cv. Moneymaker) plants. Plants were inoculated with each of the four PGPRs, and plant tissues (roots, stems, and leaves) were harvested at 24 h and 48 h post-inoculation. Methanol-extracted metabolites were analyzed by ultra-high performance liquid chromatography mass spectrometry (UHPLC-MS). Chemometric methods were applied to mine the data and characterize the differential metabolic profiles induced by the PGPR. The results revealed that all four strains induced defense-related metabolic reprogramming in the plants, characterized by dynamic changes to the metabolomes involving hydroxycinnamates, benzoates, flavonoids, and glycoalkaloids. In addition, targeted analysis of aromatic amino acids indicated differential quantitative increases or decreases over a two-day period in response to the four PGPR strains. The metabolic alterations point to an altered or preconditioned state that renders the plants primed for enhanced defense responses. The results contribute to ongoing efforts in investigating and unraveling the biochemical processes that define the PGPR priming phenomenon.
Collapse
|
28
|
Mareya CR, Tugizimana F, Di Lorenzo F, Silipo A, Piater LA, Molinaro A, Dubery IA. Adaptive defence-related changes in the metabolome of Sorghum bicolor cells in response to lipopolysaccharides of the pathogen Burkholderia andropogonis. Sci Rep 2020; 10:7626. [PMID: 32376849 PMCID: PMC7203242 DOI: 10.1038/s41598-020-64186-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Plant cell suspension culture systems are valuable for the study of complex biological systems such as inducible defence responses and aspects of plant innate immunity. Perturbations to the cellular metabolome can be investigated using metabolomic approaches in order to reveal the underlying metabolic mechanism of cellular responses. Lipopolysaccharides from the sorghum pathogen, Burkholderia andropogonis (LPSB.a.), were purified, chemically characterised and structurally elucidated. The lipid A moiety consists of tetra- and penta-acylated 1,4'-bis-phosphorylated disaccharide backbone decorated by aminoarabinose residues, while the O-polysaccharide chain consists of linear trisaccharide repeating units of [→2)-α-Rha3CMe-(1 → 3)-α-Rha-(1 → 3)-α-Rha-(1 → ]. The effect of LPSB.a. in triggering metabolic reprogramming in Sorghum bicolor cells were investigated using untargeted metabolomics with liquid chromatography coupled to mass spectrometry detection. Cells were treated with LPSB.a. and the metabolic changes monitored over a 30 h time period. Alterations in the levels of phytohormones (jasmonates, zeatins, traumatic-, azelaic- and abscisic acid), which marked the onset of defence responses and accumulation of defence-related metabolites, were observed. Phenylpropanoids and indole alkaloids as well as oxylipins that included di- and trihydroxyoctadecedienoic acids were identified as signatory biomarkers, with marked secretion into the extracellular milieu. The study demonstrated that sorghum cells recognise LPSB.a. as a 'microbe-associated molecular pattern', perturbing normal cellular homeostasis. The molecular features of the altered metabolome were associated with phytohormone-responsive metabolomic reconfiguration of primary and secondary metabolites originating from various metabolic pathways, in support of defence and immunity.
Collapse
Affiliation(s)
- Charity R Mareya
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Fidele Tugizimana
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Lizelle A Piater
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Ian A Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa.
| |
Collapse
|
29
|
Integrated Metabolomics and Transcriptomics Suggest the Global Metabolic Response to 2-Aminoacrylate Stress in Salmonella enterica. Metabolites 2019; 10:metabo10010012. [PMID: 31878179 PMCID: PMC7023182 DOI: 10.3390/metabo10010012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/09/2023] Open
Abstract
In Salmonella enterica, 2-aminoacrylate (2AA) is a reactive enamine intermediate generated during a number of biochemical reactions. When the 2-iminobutanoate/2-iminopropanoate deaminase (RidA; EC: 3.5.99.10) is eliminated, 2AA accumulates and inhibits the activity of multiple pyridoxal 5’-phosphate(PLP)-dependent enzymes. In this study, untargeted proton nuclear magnetic resonance (1H NMR) metabolomics and transcriptomics data were used to uncover the global metabolic response of S. enterica to the accumulation of 2AA. The data showed that elimination of RidA perturbed folate and branched chain amino acid metabolism. Many of the resulting perturbations were consistent with the known effect of 2AA stress, while other results suggested additional potential enzyme targets of 2AA-dependent damage. The majority of transcriptional and metabolic changes appeared to be the consequence of downstream effects on the metabolic network, since they were not directly attributable to a PLP-dependent enzyme. In total, the results highlighted the complexity of changes stemming from multiple perturbations of the metabolic network, and suggested hypotheses that will be valuable in future studies of the RidA paradigm of endogenous 2AA stress.
Collapse
|
30
|
Carlson R, Tugizimana F, Steenkamp PA, Dubery IA, Hassen AI, Labuschagne N. Rhizobacteria-induced systemic tolerance against drought stress in Sorghum bicolor (L.) Moench. Microbiol Res 2019; 232:126388. [PMID: 31865223 DOI: 10.1016/j.micres.2019.126388] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/15/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022]
Abstract
Induction of systemic tolerance in sorghum [Sorghum bicolor (L.) Moench] against drought stress was studied by screening a large collection of rhizobacterial isolates for their potential to exhibit this essential plant growth-promoting trait. This was done by means of a greenhouse assay that measured the relative change in both plant height and -biomass (roots and shoots) between rhizobacteria-primed versus non-primed (naïve) plants under drought stress conditions. In order to elucidate the metabolomic changes in S. bicolor that conferred the drought stress tolerance after treatment (priming) with selected isolates, untargeted ultra-high performance liquid chromatography-high definition mass spectrometry (UHPLC-HDMS)-based metabolomics was carried out. Intracellular metabolites were methanol-extracted from rhizobacteria-primed and naïve S. bicolor roots and shoots. Extracts were analysed on a UHPLC-HDMS system and the generated data were chemometrically mined to determine signatory metabolic profiles and bio-markers related to induced systemic tolerance. The metabolomic results showed significant treatment-related differential metabolic reprogramming between rhizobacteria-primed and naïve plants, correlating to the ability of the selected isolates to protect S. bicolor against drought stress. The selected isolates, identified by means of 16S rRNA gene sequencing as members of the genera Bacillus and Pseudomonas, were screened for 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity by means of an in vitro assay and the presence of the acdS gene was subsequently confirmed by PCR for strain N66 (Pseudomonas sp.). The underlying key metabolic changes in the enhanced drought stress tolerance observed in rhizobacteria-primed S. bicolor plants included (1) augmented antioxidant capacity; (2) growth promotion and root architecture modification as a result of the upregulation of the hormones gibberellic acid, indole acetic acid and cytokinin; (3) the early activation of induce systemic tolerance through the signalling hormones brassinolides, salicylic acid and jasmonic acid and signalling molecules sphingosine and psychosine; (4) the production of the osmolytes proline, glutamic acid and choline; (5) the production of the epicuticular wax docosanoic acid and (6) ACC deaminase activity resulting in lowered ethylene levels. These results unravelled key molecular details underlying the PGPR-induced systemic tolerance in sorghum plants, providing insights for the plant priming for abiotic stress.
Collapse
Affiliation(s)
- René Carlson
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa.
| | - Fidele Tugizimana
- Centre for Plant Metabolomics Research, Department of Biochemistry, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, South Africa.
| | - Paul A Steenkamp
- Centre for Plant Metabolomics Research, Department of Biochemistry, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, South Africa.
| | - Ian A Dubery
- Centre for Plant Metabolomics Research, Department of Biochemistry, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, South Africa.
| | - Ahmed Idris Hassen
- Agricultural Research Council, Plant Health and Protection, Private Bag X134, Queenswood, 0121, Pretoria, South Africa.
| | - Nico Labuschagne
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa.
| |
Collapse
|
31
|
Unravelling the Metabolic Reconfiguration of the Post-Challenge Primed State in Sorghum bicolor Responding to Colletotrichum sublineolum Infection. Metabolites 2019; 9:metabo9100194. [PMID: 31547091 PMCID: PMC6835684 DOI: 10.3390/metabo9100194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022] Open
Abstract
Priming is a natural phenomenon that pre-conditions plants for enhanced defence against a wide range of pathogens. It represents a complementary strategy, or sustainable alternative that can provide protection against disease. However, a comprehensive functional and mechanistic understanding of the various layers of priming events is still limited. A non-targeted metabolomics approach was used to investigate metabolic changes in plant growth-promoting rhizobacteria (PGPR)-primed Sorghum bicolor seedlings infected with the anthracnose-causing fungal pathogen, Colletotrichum sublineolum, with a focus on the post-challenge primed state phase. At the 4-leaf growth stage, the plants were treated with a strain of Paenibacillus alvei at 108 cfu mL−1. Following a 24 h PGPR application, the plants were inoculated with a C. sublineolum spore suspension (106 spores mL−1), and the infection monitored over time: 1, 3, 5, 7 and 9 days post-inoculation. Non-infected plants served as negative controls. Intracellular metabolites from both inoculated and non-inoculated plants were extracted with 80% methanol-water. The extracts were chromatographically and spectrometrically analysed on an ultra-high performance liquid chromatography (UHPLC) system coupled to high-definition mass spectrometry. The acquired multidimensional data were processed to create data matrices for chemometric modelling. The computed models indicated time-related metabolic perturbations that reflect primed responses to the fungal infection. Evaluation of orthogonal projection to latent structure-discriminant analysis (OPLS-DA) loading shared and unique structures (SUS)-plots uncovered the differential stronger defence responses against the fungal infection observed in primed plants. These involved enhanced levels of amino acids (tyrosine, tryptophan), phytohormones (jasmonic acid and salicylic acid conjugates, and zeatin), and defence-related components of the lipidome. Furthermore, other defence responses in both naïve and primed plants were characterised by a complex mobilisation of phenolic compounds and de novo biosynthesis of the flavones, apigenin and luteolin and the 3-deoxyanthocyanidin phytoalexins, apigeninidin and luteolinidin, as well as some related conjugates.
Collapse
|
32
|
Shi Y, Wang Y, Huang W, Wang Y, Wang R, Yuan Y. Integration of Metabolomics and Transcriptomics To Reveal Metabolic Characteristics and Key Targets Associated with Cisplatin Resistance in Nonsmall Cell Lung Cancer. J Proteome Res 2019; 18:3259-3267. [PMID: 31373204 DOI: 10.1021/acs.jproteome.9b00209] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuhuan Shi
- Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Yuanyuan Wang
- Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Wanying Huang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Wang
- Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| |
Collapse
|
33
|
Carlson R, Tugizimana F, Steenkamp PA, Dubery IA, Labuschagne N. Differential Metabolic Reprogramming in Paenibacillus alvei-Primed Sorghum bicolor Seedlings in Response to Fusarium pseudograminearum Infection. Metabolites 2019; 9:E150. [PMID: 31340428 PMCID: PMC6680708 DOI: 10.3390/metabo9070150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/07/2019] [Accepted: 07/10/2019] [Indexed: 01/14/2023] Open
Abstract
Metabolic changes in sorghum seedlings in response to Paenibacillus alvei (NAS-6G6)-induced systemic resistance against Fusarium pseudograminearum crown rot were investigated by means of untargeted ultra-high performance liquid chromatography-high definition mass spectrometry (UHPLC-HDMS). Treatment of seedlings with the plant growth-promoting rhizobacterium P. alvei at a concentration of 1 × 108 colony forming units mL-1 prior to inoculation with F. pseudograminearum lowered crown rot disease severity significantly at the highest inoculum dose of 1 × 106 spores mL-1. Intracellular metabolites were subsequently methanol-extracted from treated and untreated sorghum roots, stems and leaves at 1, 4 and 7 days post inoculation (d.p.i.) with F. pseudograminearum. The extracts were analysed on an UHPLC-HDMS platform, and the data chemometrically processed to determine metabolic profiles and signatures related to priming and induced resistance. Significant treatment-related differences in primary and secondary metabolism post inoculation with F. pseudograminearum were observed between P. alvei-primed versus naïve S. bicolor seedlings. The differential metabolic reprogramming in primed plants comprised of a quicker and/or enhanced upregulation of amino acid-, phytohormone-, phenylpropanoid-, flavonoid- and lipid metabolites in response to inoculation with F. pseudograminearum.
Collapse
Affiliation(s)
- René Carlson
- Department of Plant and Soil Sciences, Faculty of Plant Pathology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Fidele Tugizimana
- Centre for Plant Metabolomics Research, Department of Biochemistry, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Paul A Steenkamp
- Centre for Plant Metabolomics Research, Department of Biochemistry, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Ian A Dubery
- Centre for Plant Metabolomics Research, Department of Biochemistry, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Nico Labuschagne
- Department of Plant and Soil Sciences, Faculty of Plant Pathology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa.
| |
Collapse
|