1
|
Huang F, Sun X, Xu Q, Cheng W, Shi Y, Pan L. Recent Developments and Applications of Tactile Sensors with Biomimetic Microstructures. Biomimetics (Basel) 2025; 10:147. [PMID: 40136801 PMCID: PMC11939859 DOI: 10.3390/biomimetics10030147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Humans possess an innate ability to perceive a wide range of objects through touch, which allows them to interact effectively with their surroundings. Similarly, tactile perception in artificial sensory systems enables the acquisition of object properties, human physiological signals, and environmental information. Biomimetic tactile sensors, as an emerging sensing technology, draw inspiration from biological systems and exhibit high sensitivity, rapid response, multimodal perception, and stability. By mimicking biological mechanisms and microstructures, these sensors achieve precise detection of mechanical signals, thereby paving the way for advancements in tactile sensing applications. This review provides an overview of key sensing mechanisms, microstructure designs, and advanced fabrication techniques of biomimetic tactile sensors. The system architecture design of biomimetic tactile sensing systems is also explored. Furthermore, the review highlights significant applications of these sensors in recent years, including texture recognition, human health detection, and human-machine interaction. Finally, the key challenges and future development prospects related to biomimetic tactile sensors are discussed.
Collapse
Affiliation(s)
- Fengchang Huang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xidi Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Qiaosheng Xu
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Wen Cheng
- School of Integrated Circuits, Nanjing University, Suzhou 215163, China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
Kantaros A, Ganetsos T, Petrescu FIT. Transforming Object Design and Creation: Biomaterials and Contemporary Manufacturing Leading the Way. Biomimetics (Basel) 2024; 9:48. [PMID: 38248622 PMCID: PMC10813684 DOI: 10.3390/biomimetics9010048] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
In the field of three-dimensional object design and fabrication, this paper explores the transformative potential at the intersection of biomaterials, biopolymers, and additive manufacturing. Drawing inspiration from the intricate designs found in the natural world, this study contributes to the evolving landscape of manufacturing and design paradigms. Biomimicry, rooted in emulating nature's sophisticated solutions, serves as the foundational framework for developing materials endowed with remarkable characteristics, including adaptability, responsiveness, and self-transformation. These advanced engineered biomimetic materials, featuring attributes such as shape memory and self-healing properties, undergo rigorous synthesis and characterization procedures, with the overarching goal of seamless integration into the field of additive manufacturing. The resulting synergy between advanced manufacturing techniques and nature-inspired materials promises to revolutionize the production of objects capable of dynamic responses to environmental stimuli. Extending beyond the confines of laboratory experimentation, these self-transforming objects hold significant potential across diverse industries, showcasing innovative applications with profound implications for object design and fabrication. Through the reduction of waste generation, minimization of energy consumption, and the reduction of environmental footprint, the integration of biomaterials, biopolymers, and additive manufacturing signifies a pivotal step towards fostering ecologically conscious design and manufacturing practices. Within this context, inanimate three-dimensional objects will possess the ability to transcend their static nature and emerge as dynamic entities capable of evolution, self-repair, and adaptive responses in harmony with their surroundings. The confluence of biomimicry and additive manufacturing techniques establishes a seminal precedent for a profound reconfiguration of contemporary approaches to design, manufacturing, and ecological stewardship, thereby decisively shaping a more resilient and innovative global milieu.
Collapse
Affiliation(s)
- Antreas Kantaros
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece
| | - Theodore Ganetsos
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece
| | - Florian Ion Tiberiu Petrescu
- “Theory of Mechanisms and Robots” Department, Faculty of Industrial Engineering and Robotics, National University of Science and Technology Polytechnic Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
3
|
Li S, Chen X, Li X, Tian H, Wang C, Nie B, He J, Shao J. Bioinspired robot skin with mechanically gated electron channels for sliding tactile perception. SCIENCE ADVANCES 2022; 8:eade0720. [PMID: 36459548 PMCID: PMC10936060 DOI: 10.1126/sciadv.ade0720] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Human-like tactile perception is critical for promoting robotic intelligence. However, reproducing tangential "sliding" perception of human skin is still struggling. Inspired by the lateral gating mechanosensing mechanism of mechanosensory cells, which perceives mechanical stimuli by lateral tension-induced opening-closing of ion channels, we report a robot skin (R-skin) with mechanically gated electron channels, achieving ultrasensitive and fast-response sliding tactile perception via pyramidal artificial fingerprint-triggered opening-closing of electron gates (E-gates, namely, customized V-shaped cracks within embedded mesh electron channels). By imitating cytomembrane to modulate membrane mechanics, local strain is enhanced at E-gates to effectively regulate electron pathways for high sensitivity while weakened at other positions to suppress random cracks for robust stability. The R-skin can directly recognize ultrafine surface microstructure (5 μm) at a response frequency (485 Hz) outshining humans and achieve human-like sliding perception functions, including dexterously distinguishing texture of complex-shaped objects and providing real-time feedback for grasping.
Collapse
Affiliation(s)
- Sheng Li
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Xiaoliang Chen
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Xiangming Li
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Hongmiao Tian
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Chunhui Wang
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Bangbang Nie
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Juan He
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Jinyou Shao
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| |
Collapse
|
4
|
See Me, Feel Me, Touch Me, Heal Me: A Contextual Overview of Conductive Polymer Composites as Synthetic Human Skin. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6050141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fields of polymer science, conductive composites, materials engineering, robotics, and human perception intersect at the development and application of synthetic human skin. To be accepted by human users, artificial human skin must meet several requirement benchmarks. Synthetic human skin must look realistic, but not be eerie or creepy, upsetting those using or interacting with the material. Synthetic skin must feel like human skin, including mechanical response, thermal conductivity, and tactile properties. Realistic synthetic human skin must be electrically conductive, so that the user may experience accurate sensations of touch and feel. Finally, synthetic human skin should possess some degree of self-healing behavior. This review provides a brief description of advances in these disparate aspects of synthetic skin science, from the perspective of a practicing conductive polymer composite scientist and engineer.
Collapse
|
5
|
Choi E, Kim S, Gong J, Sun H, Kwon M, Seo H, Sul O, Lee SB. Tactile Interaction Sensor with Millimeter Sensing Acuity. SENSORS 2021; 21:s21134274. [PMID: 34206489 PMCID: PMC8272110 DOI: 10.3390/s21134274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 01/06/2023]
Abstract
In this article we report on a 3 × 3 mm tactile interaction sensor that is able to simultaneously detect pressure level, pressure distribution, and shear force direction. The sensor consists of multiple mechanical switches under a conducting diaphragm. An external stimulus is measured by the deflection of the diaphragm and the arrangement of mechanical switches, resulting in low noise, high reliability, and high uniformity. Our sensor is able to detect tactile forces as small as ~50 mgf along with the direction of the shear force. It also distinguishes whether there is a normal pressure during slip motion. We also succeed in detecting the contact shape and the contact motion, demonstrating potential applications in robotics and remote input interfaces. Since our sensor has a simple structure and its function depends only on sensor dimensions, not on an active sensing material, in comparison with previous tactile sensors, our sensor shows high uniformity and reliability for an array-type integration.
Collapse
Affiliation(s)
- Eunsuk Choi
- Department of Electronic Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (E.C.); (S.K.); (J.G.); (H.S.); (M.K.); (H.S.)
| | - Sunjin Kim
- Department of Electronic Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (E.C.); (S.K.); (J.G.); (H.S.); (M.K.); (H.S.)
| | - Jinsil Gong
- Department of Electronic Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (E.C.); (S.K.); (J.G.); (H.S.); (M.K.); (H.S.)
| | - Hyeonjeong Sun
- Department of Electronic Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (E.C.); (S.K.); (J.G.); (H.S.); (M.K.); (H.S.)
| | - Minjin Kwon
- Department of Electronic Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (E.C.); (S.K.); (J.G.); (H.S.); (M.K.); (H.S.)
| | - Hojun Seo
- Department of Electronic Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (E.C.); (S.K.); (J.G.); (H.S.); (M.K.); (H.S.)
| | - Onejae Sul
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
| | - Seung-Beck Lee
- Department of Electronic Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (E.C.); (S.K.); (J.G.); (H.S.); (M.K.); (H.S.)
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
- Correspondence: ; Tel.: +82-2-2220-1676; Fax: +82-2-2294-1676
| |
Collapse
|
6
|
Kim K, Sim M, Lim S, Kim D, Lee D, Shin K, Moon C, Choi J, Jang JE. Tactile Avatar: Tactile Sensing System Mimicking Human Tactile Cognition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002362. [PMID: 33854875 PMCID: PMC8024994 DOI: 10.1002/advs.202002362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/14/2020] [Indexed: 05/24/2023]
Abstract
As a surrogate for human tactile cognition, an artificial tactile perception and cognition system are proposed to produce smooth/soft and rough tactile sensations by its user's tactile feeling; and named this system as "tactile avatar". A piezoelectric tactile sensor is developed to record dynamically various physical information such as pressure, temperature, hardness, sliding velocity, and surface topography. For artificial tactile cognition, the tactile feeling of humans to various tactile materials ranging from smooth/soft to rough are assessed and found variation among participants. Because tactile responses vary among humans, a deep learning structure is designed to allow personalization through training based on individualized histograms of human tactile cognition and recording physical tactile information. The decision error in each avatar system is less than 2% when 42 materials are used to measure the tactile data with 100 trials for each material under 1.2N of contact force with 4cm s-1 of sliding velocity. As a tactile avatar, the machine categorizes newly experienced materials based on the tactile knowledge obtained from training data. The tactile sensation showed a high correlation with the specific user's tendency. This approach can be applied to electronic devices with tactile emotional exchange capabilities, as well as advanced digital experiences.
Collapse
Affiliation(s)
- Kyungsoo Kim
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
- Department of NeurologyUniversity of CaliforniaSan Francisco (UCSF)San FranciscoCA94158USA
| | - Minkyung Sim
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| | - Sung‐Ho Lim
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| | - Dongsu Kim
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| | - Doyoung Lee
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| | - Kwonsik Shin
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| | - Cheil Moon
- Department of Brain and Cognitive SciencesDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711–873Korea
| | - Ji‐Woong Choi
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| | - Jae Eun Jang
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| |
Collapse
|
7
|
A Non-Array Type Cut to Shape Soft Slip Detection Sensor Applicable to Arbitrary Surface. SENSORS 2020; 20:s20216185. [PMID: 33143062 PMCID: PMC7662509 DOI: 10.3390/s20216185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/03/2022]
Abstract
The presence of a tactile sensor is essential to hold an object and manipulate it without damage. The tactile information helps determine whether an object is stably held. If a tactile sensor is installed at wherever the robot and the object touch, the robot could interact with more objects. In this paper, a skin type slip sensor that can be attached to the surface of a robot with various curvatures is presented. A simple mechanical sensor structure enables the cut and fit of the sensor according to the curvature. The sensor uses a non-array structure and can operate even if a part of the sensor is cut off. The slip was distinguished using a simple vibration signal received from the sensor. The signal is transformed into the time-frequency domain, and the slippage was determined using an artificial neural network. The accuracy of slip detection was compared using four artificial neural network models. In addition, the strengths and weaknesses of each neural network model were analyzed according to the data used for training. As a result, the developed sensor detected slip with an average of 95.73% accuracy at various curvatures and contact points.
Collapse
|
8
|
Zhu L, Wang Y, Mei D, Jiang C. Development of Fully Flexible Tactile Pressure Sensor with Bilayer Interlaced Bumps for Robotic Grasping Applications. MICROMACHINES 2020; 11:E770. [PMID: 32806604 PMCID: PMC7463877 DOI: 10.3390/mi11080770] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 01/06/2023]
Abstract
Flexible tactile sensors have been utilized in intelligent robotics for human-machine interaction and healthcare monitoring. The relatively low flexibility, unbalanced sensitivity and sensing range of the tactile sensors are hindering the accurate tactile information perception during robotic hand grasping of different objects. This paper developed a fully flexible tactile pressure sensor, using the flexible graphene and silver composites as the sensing element and stretchable electrodes, respectively. As for the structural design of the tactile sensor, the proposed bilayer interlaced bumps can be used to convert external pressure into the stretching of graphene composites. The fabricated tactile sensor exhibits a high sensing performance, including relatively high sensitivity (up to 3.40% kPa-1), wide sensing range (200 kPa), good dynamic response, and considerable repeatability. Then, the tactile sensor has been integrated with the robotic hand finger, and the grasping results have indicated the capability of using the tactile sensor to detect the distributed pressure during grasping applications. The grasping motions, properties of the objects can be further analyzed through the acquired tactile information in time and spatial domains, demonstrating the potential applications of the tactile sensor in intelligent robotics and human-machine interfaces.
Collapse
Affiliation(s)
- Lingfeng Zhu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (L.Z.)
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (L.Z.)
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (L.Z.)
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengpeng Jiang
- Research Center for Smart Sensing, Zhejiang Lab, Hangzhou 310000, China;
| |
Collapse
|
9
|
Editorial of Special Issue "Tactile Sensing Technology and Systems". MICROMACHINES 2020; 11:mi11050506. [PMID: 32429431 PMCID: PMC7281219 DOI: 10.3390/mi11050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/17/2022]
|