1
|
Cheng Y, Li B, Wang J, Wang Y, Wang L, Wei M, Wang Y, Chen Z, Zhao G. Rapid Fabrication of Diverse Hydrogel Microspheres for Drug Evaluation on a Rotating Microfluidic System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8985-8997. [PMID: 40150939 DOI: 10.1021/acs.langmuir.5c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Hydrogel microspheres are considered ideal carriers with broad applications in 3D cell culture, drug delivery, and microtissue construction. Although multiple methods have been developed for generating hydrogel microspheres, there is still a lack of a universal approach that combines operability, stability, cost-effectiveness, and biocompatibility. In this work, a novel rotating microfluidic system (RMS) is proposed, which can rapidly fabricate diverse poly(ethylene glycol) diacrylate/sodium alginate (PEGDA/SA) hydrogel microspheres by motor-driven rotation of the oil phase to form a special T-shaped structure with the needle. The main part of the system consists of commercially available motors, a beaker, and needles that do not require precision machining and are user-friendly with low cost. Moreover, by adjusting system parameters such as the needle structure, flow rate, and rotational speed, the platform enables rapid fabrication of hydrogel microspheres with different sizes and diverse cores, including crescent, thick wavy, oval, and spherical. Furthermore, tumor cell-laden hyaluronic acid methacrylate/sodium alginate (HAMA/SA) hydrogel microspheres were fabricated by using this system, which demonstrated good cell viability and proliferation in the subsequent 3D culture. In vitro drug evaluation of tumor models using cisplatin revealed the potential of this system for drug evaluation. These results indicated that RMS has good potential in other 3D cell culture-based biomedical applications.
Collapse
Affiliation(s)
- Yue Cheng
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Bing Li
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Jianping Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yubin Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Linshan Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Muling Wei
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yuying Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Zhongrong Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Gang Zhao
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Kordzadeh-Kermani V, Vahid M, Ashrafizadeh SN, Martinez-Chapa SO, Madou MJ, Madadelahi M. Low-cost optical sensors in electrified lab-on-a-disc platforms: liquid-phase boundary detection and automated diagnostics. MICROSYSTEMS & NANOENGINEERING 2025; 11:61. [PMID: 40195326 PMCID: PMC11977271 DOI: 10.1038/s41378-025-00896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/18/2025] [Accepted: 02/13/2025] [Indexed: 04/09/2025]
Abstract
Centrifugal microfluidic platforms are highly regarded for their potential in multiplexing and automation, as well as their wide range of applications, especially in separating blood plasma and manipulating two-phase flows. However, the need to use stroboscopes or high-speed cameras for monitoring these tasks hinders the extensive use of these platforms in research and commercial settings. In this study, we introduce an innovative and cost-effective strategy for using an array of light-dependent resistors (LDRs) as optical sensors in microfluidic devices, particularly centrifugal platforms. While LDRs are attractive for their potential use as photodetectors, their bulky size frequently restricts their ability to provide high-resolution detection in microfluidic systems. Here, we use specific waveguides to direct light beams from narrow apertures onto the surface of LDRs. We integrated these LDRs into electrified Lab-on-a-Disc (eLOD) devices, with wireless connectivity to smartphones and laptops. This enables many applications, such as droplet/particle counting and velocity measurement, concentration analysis, fluidic interface detection in multiphase flows, real-time monitoring of sample volume on centrifugal platforms, and detection of blood plasma separation as an alternative to costly stroboscope devices, microscopes, and high-speed imaging. We used numerical simulations to evaluate various fluids and scenarios, which include rotation speeds of up to 50 rad/s and a range of droplet sizes. For the testbed, we used the developed eLOD device to analyze red blood cell (RBC) deformability and improve the automated detection of sickle cell anemia by monitoring differences in RBC deformability during centrifugation using the sensors' signals. In addition to sickle cell anemia, this device has the potential to facilitate low-cost automated detection of other medical conditions characterized by altered RBC deformability, such as thalassemia, malaria, and diabetes.
Collapse
Affiliation(s)
- Vahid Kordzadeh-Kermani
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
| | - Maryam Vahid
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
| | | | - Marc J Madou
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico.
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, USA.
| | - Masoud Madadelahi
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico.
| |
Collapse
|
3
|
Wang X, Cai X, Wan C, Yuan H, Li S, Zhang Y, Zhao R, Qin Y, Li Y, Liu B, Chen P. Data-Driven Theoretical Modeling of Centrifugal Step Emulsification and Its Application in Comprehensive Multiscale Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411459. [PMID: 39921431 PMCID: PMC11967796 DOI: 10.1002/advs.202411459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Indexed: 02/10/2025]
Abstract
Tailored droplet generation is crucial for droplet microfluidics that involve samples of varying sizes. However, the absence of precise predictive models forces droplet platforms to rely on empiricism derived from extensive experiments, underscoring the need for comprehensive modeling analysis. To address this, a novel customized assembled centrifugal step emulsifier (CASE) is presented by incorporating a "jigsaw puzzles" design to efficiently acquire large-scale experimental data. Numerical simulations are utilized to analyze fluid configurations during step emulsification, identifying a key connection tube that determines droplet size. By training and verifying with the experimental and simulation datasets, a comprehensive theoretical model is established that allows for the preliminary design of the droplet size and generation frequency with an average error rate of 4.8%, successfully filling a critical gap in existing field. This predictive model empowers the CASE to achieve all-in-one functionality, including droplet pre-design, generation, manipulation, and on-site detection. As a proof of concept, multiscale sample analysis ranging from nanoscale nucleic acids to microscale bacteria and 3D cell spheroids is realized in the CASE. In summary, this platform offers valuable guidance for customized droplet generation by centrifugal step emulsifiers and promotes the adoption of droplet microfluidics in biochemical assays.
Collapse
Affiliation(s)
- Xin Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Xiaolu Cai
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Huijuan Yuan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Yiwei Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Ran Zhao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Yuxi Qin
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Bi‐Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
4
|
Malic L, Clime L, Moon BU, Nassif C, Da Fonte D, Brassard D, Lukic L, Geissler M, Morton K, Charlebois D, Veres T. Sample-to-answer centrifugal microfluidic droplet PCR platform for quantitation of viral load. LAB ON A CHIP 2024; 24:4755-4765. [PMID: 39301752 DOI: 10.1039/d4lc00533c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Droplet digital polymerase chain reaction (ddPCR) stands out as a highly sensitive diagnostic technique that is gaining traction in infectious disease diagnostics due to its ability to quantitate very low numbers of viral gene copies. By partitioning the sample into thousands of droplets, ddPCR enables precise and absolute quantification without relying on a standard curve. However, current ddPCR systems often exhibit relatively low levels of integration, and the analytical process remains dependent on elaborate workflows for up-front sample preparation. Here, we introduce a fully-integrated system seamlessly combining viral lysis, RNA extraction, emulsification, reverse transcription (RT) ddPCR, and fluorescence readout in a sample-to-answer format. The system comprises a disposable microfluidic cartridge housing buffers and reagents required for the assay, and a centrifugal platform that allows for pneumatic actuation of liquids during rotation, enabling automation of the workflow. Highly monodisperse droplets (∼50 μm in diameter) are produced using centrifugal step emulsification and automatically transferred to an integrated heating module for target amplification. The platform is equipped with a miniature fluorescence imaging system enabling on-chip read-out of droplets after RT-ddPCR. We demonstrate sample-to-answer detection of SARS-CoV-2 N and E genes, along with RNase P endogenous reference, using hydrolysis probes and multiplexed amplification within single droplets for concentrations as low as 0.1 copy per μL. We also tested 14 nasopharyngeal swab specimens from patients and were able to distinguish positive and negative SARS-CoV-2 samples with 100% accuracy, surpassing results obtained by conventional real-time amplification.
Collapse
Affiliation(s)
- Lidija Malic
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
- Department of Biomedical Engineering, McGill University, 775 Rue University, Suite 316, Montreal, QC, H3A 2B4, Canada
| | - Liviu Clime
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Byeong-Ui Moon
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Christina Nassif
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Dillon Da Fonte
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Daniel Brassard
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Ljuboje Lukic
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Matthias Geissler
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Keith Morton
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Denis Charlebois
- Canadian Space Agency, 6767 Route de l'Aéroport, Saint-Hubert, QC, J3Y 8Y9, Canada
| | - Teodor Veres
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| |
Collapse
|
5
|
Electrified lab on disc systems: A comprehensive review on electrokinetic applications. Biosens Bioelectron 2022; 214:114381. [DOI: 10.1016/j.bios.2022.114381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/24/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022]
|
6
|
Madadelahi M, Azimi-Boulali J, Madou M, Martinez-Chapa SO. Characterization of Fluidic-Barrier-Based Particle Generation in Centrifugal Microfluidics. MICROMACHINES 2022; 13:mi13060881. [PMID: 35744496 PMCID: PMC9228483 DOI: 10.3390/mi13060881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022]
Abstract
The fluidic barrier in centrifugal microfluidic platforms is a newly introduced concept for making multiple emulsions and microparticles. In this study, we focused on particle generation application to better characterize this method. Because the phenomenon is too fast to be captured experimentally, we employ theoretical models to show how liquid polymeric droplets pass a fluidic barrier before crosslinking. We explain how secondary flows evolve and mix the fluids within the droplets. From an experimental point of view, the effect of different parameters, such as the barrier length, source channel width, and rotational speed, on the particles’ size and aspect ratio are investigated. It is demonstrated that the barrier length does not affect the particle’s ultimate velocity. Unlike conventional air gaps, the barrier length does not significantly affect the aspect ratio of the produced microparticles. Eventually, we broaden this concept to two source fluids and study the importance of source channel geometry, barrier length, and rotational speed in generating two-fluid droplets.
Collapse
Affiliation(s)
- Masoud Madadelahi
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico;
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Correspondence: (M.M.); (S.O.M.-C.)
| | - Javid Azimi-Boulali
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico;
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, USA
| | - Marc Madou
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA 92697, USA;
| | - Sergio Omar Martinez-Chapa
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico;
- Correspondence: (M.M.); (S.O.M.-C.)
| |
Collapse
|
7
|
Gowda HN, Kido H, Wu X, Shoval O, Lee A, Lorenzana A, Madou M, Hoffmann M, Jiang SC. Development of a proof-of-concept microfluidic portable pathogen analysis system for water quality monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152556. [PMID: 34952082 PMCID: PMC8837627 DOI: 10.1016/j.scitotenv.2021.152556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 05/03/2023]
Abstract
Waterborne diseases cause millions of deaths worldwide, especially in developing communities. The monitoring and rapid detection of microbial pathogens in water is critical for public health protection. This study reports the development of a proof-of-concept portable pathogen analysis system (PPAS) that can detect bacteria in water with the potential application in a point-of-sample collection setting. A centrifugal microfluidic platform is adopted to integrate bacterial cell lysis in water samples, nucleic acid extraction, and reagent mixing with a droplet digital loop mediated isothermal amplification assay for bacteria quantification onto a single centrifugal disc (CD). Coupled with a portable "CD Driver" capable of automating the assay steps, the CD functions as a single step bacterial detection "lab" without the need to transfer samples from vial-to-vial as in a traditional laboratory. The prototype system can detect Enterococcus faecalis, a common fecal indicator bacterium, in water samples with a single touch of a start button within 1 h and having total hands-on-time being less than 5 min. An add-on bacterial concentration cup prefilled with absorbent polymer beads was designed to integrate with the pathogen CD to improve the downstream quantification sensitivity. All reagents and amplified products are contained within the single-use disc, reducing the opportunity of cross contamination of other samples by the amplification products. This proof-of-concept PPAS lays the foundation for field testing devices in areas needing more accessible water quality monitoring tools and are at higher risk for being exposed to contaminated waters.
Collapse
Affiliation(s)
- Hamsa N Gowda
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Horacio Kido
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Xunyi Wu
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Oren Shoval
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Adrienne Lee
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Albert Lorenzana
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Marc Madou
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Michael Hoffmann
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sunny C Jiang
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92617, USA.
| |
Collapse
|
8
|
Ladeira B, Custodio C, Mano J. Core-Shell Microcapsules: Biofabrication and Potential Applications in Tissue Engineering and Regenerative Medicine. Biomater Sci 2022; 10:2122-2153. [DOI: 10.1039/d1bm01974k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of biomaterial scaffolds that accurately recreate the architecture of living tissues in vitro is a major challenge in the field of tissue engineering and regenerative medicine. Core-shell microcapsules...
Collapse
|
9
|
Ducrée J. Systematic review of centrifugal valving based on digital twin modeling towards highly integrated lab-on-a-disc systems. MICROSYSTEMS & NANOENGINEERING 2021; 7:104. [PMID: 34987859 PMCID: PMC8677742 DOI: 10.1038/s41378-021-00317-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 05/07/2023]
Abstract
Current, application-driven trends towards larger-scale integration (LSI) of microfluidic systems for comprehensive assay automation and multiplexing pose significant technological and economical challenges to developers. By virtue of their intrinsic capability for powerful sample preparation, centrifugal systems have attracted significant interest in academia and business since the early 1990s. This review models common, rotationally controlled valving schemes at the heart of such "Lab-on-a-Disc" (LoaD) platforms to predict critical spin rates and reliability of flow control which mainly depend on geometries, location and liquid volumes to be processed, and their experimental tolerances. In absence of larger-scale manufacturing facilities during product development, the method presented here facilitates efficient simulation tools for virtual prototyping and characterization and algorithmic design optimization according to key performance metrics. This virtual in silico approach thus significantly accelerates, de-risks and lowers costs along the critical advancement from idea, layout, fluidic testing, bioanalytical validation, and scale-up to commercial mass manufacture.
Collapse
Affiliation(s)
- Jens Ducrée
- School of Physical Sciences, Dublin City University, Dublin, Ireland
| |
Collapse
|
10
|
Chen Z, Lv Z, Zhang Z, Weitz DA, Zhang H, Zhang Y, Cui W. Advanced microfluidic devices for fabricating multi-structural hydrogel microsphere. EXPLORATION (BEIJING, CHINA) 2021; 1:20210036. [PMID: 37323691 PMCID: PMC10191056 DOI: 10.1002/exp.20210036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/02/2021] [Indexed: 06/15/2023]
Abstract
Hydrogel microspheres are a novel functional material, arousing much attention in various fields. Microfluidics, a technology that controls and manipulates fluids at the micron scale, has emerged as a promising method for fabricating hydrogel microspheres due to its ability to generate uniform microspheres with controlled geometry. With the development of microfluidic devices, more complicated hydrogel microspheres with multiple structures can be constructed. This review presents an overview of advances in microfluidics for designing and engineering hydrogel microspheres. It starts with an introduction to the features of hydrogel microspheres and microfluidic techniques, followed by a discussion of material selection for fabricating microfluidic devices. Then the progress of microfluidic devices for single-component and composite hydrogel microspheres is described, and the method for optimizing microfluidic devices is also given. Finally, this review discusses the key research directions and applications of microfluidics for hydrogel microsphere in the future.
Collapse
Affiliation(s)
- Zehao Chen
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghaiP. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Zhendong Lv
- Department of Spine SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Zhen Zhang
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghaiP. R. China
| | - David A. Weitz
- Department of Physics and Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryÅbo Akademi University and Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Yuhui Zhang
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghaiP. R. China
- Department of Spine SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| |
Collapse
|
11
|
Lin HY, Wang TW, Lin ZH, Yao DJ. A High-voltage TENG-based Droplet Energy Generator with Ultralow Liquid Consumption. IEEE Trans Nanobioscience 2021; 21:358-362. [PMID: 34428149 DOI: 10.1109/tnb.2021.3105098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A solid-liquid triboelectric nanogenerator (TENG) has attracted increasing research interest in relation to the development of regeneration energy based on water resources. The output of solid-liquid TENG remains unsolved, however, because of the low voltage output that impedes wide applications. To this end, in this work we developed a miniaturized microfluidic channel-based TENG device for highly efficient conversion of energy from the transport of a water droplet to an electrical output. We investigated an optimized design in a triboelectric material, the droplet transport and the electrostatic induction layer to provide a high voltage output and stable energy harvesting. The optimized device demonstrated maximum voltage amplitude 102 mV with an ultralow liquid consumption, 0.36 μL, resulting in sample-energy conversion 283.33 mV/μL. This novel device is expected potentially to address the limitations imposed by sample consumption in energy harvesting in the future.
Collapse
|
12
|
Design Optimization of Centrifugal Microfluidic “Lab-on-a-Disc” Systems towards Fluidic Larger-Scale Integration. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enhancing the degree of functional multiplexing while assuring operational reliability and manufacturability at competitive costs are crucial ingredients for enabling comprehensive sample-to-answer automation, e.g., for use in common, decentralized “Point-of-Care” or “Point-of-Use” scenarios. This paper demonstrates a model-based “digital twin” approach, which efficiently supports the algorithmic design optimization of exemplary centrifugo-pneumatic (CP) dissolvable-film (DF) siphon valves toward larger-scale integration (LSI) of well-established “Lab-on-a-Disc” (LoaD) systems. Obviously, the spatial footprint of the valves and their upstream laboratory unit operations (LUOs) have to fit, at a given radial position prescribed by its occurrence in the assay protocol, into the locally accessible disc space. At the same time, the retention rate of a rotationally actuated CP-DF siphon valve and, most challengingly, its band width related to unavoidable tolerances of experimental input parameters need to slot into a defined interval of the practically allowed frequency envelope. To accomplish particular design goals, a set of parametrized metrics is defined, which are to be met within their practical boundaries while (numerically) minimizing the band width in the frequency domain. While each LSI scenario needs to be addressed individually on the basis of the digital twin, a suite of qualitative design rules and instructive showcases structures are presented.
Collapse
|
13
|
Ducrée J. Secure Air Traffic Control at the Hub of Multiplexing on the Centrifugo-Pneumatic Lab-on-a-Disc Platform. MICROMACHINES 2021; 12:700. [PMID: 34203926 PMCID: PMC8232791 DOI: 10.3390/mi12060700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Fluidic larger-scale integration (LSI) resides at the heart of comprehensive sample-to-answer automation and parallelization of assay panels for frequent and ubiquitous bioanalytical testing in decentralized point-of-use/point-of-care settings. This paper develops a novel "digital twin" strategy with an emphasis on rotational, centrifugo-pneumatic flow control. The underlying model systematically connects retention rates of rotationally actuated valves as a key element of LSI to experimental input parameters; for the first time, the concept of band widths in frequency space as the decisive quantity characterizing operational robustness is introduced, a set of quantitative performance metrics guiding algorithmic optimization of disc layouts is defined, and the engineering principles of advanced, logical flow control and timing are elucidated. Overall, the digital twin enables efficient design for automating multiplexed bioassay protocols on such "Lab-on-a-Disc" (LoaD) systems featuring high packing density, reliability, configurability, modularity, and manufacturability to eventually minimize cost, time, and risk of development and production.
Collapse
Affiliation(s)
- Jens Ducrée
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
14
|
Shieh H, Saadatmand M, Eskandari M, Bastani D. Microfluidic on-chip production of microgels using combined geometries. Sci Rep 2021; 11:1565. [PMID: 33452407 PMCID: PMC7810975 DOI: 10.1038/s41598-021-81214-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Microfluidic on-chip production of microgels using external gelation can serve numerous applications that involve encapsulation of sensitive cargos. Nevertheless, on-chip production of microgels in microfluidic devices can be challenging due to problems induced by the rapid increase in precursor solution viscosity like clogging. Here, a novel design incorporating a step, which includes a sudden increase in cross-sectional area, before a flow-focusing nozzle was proposed for microfluidic droplet generators. Besides, a shielding oil phase was utilized to avoid the occurrence of emulsification and gelation stages simultaneously. The step which was located before the flow-focusing nozzle facilitated the full shielding of the dispersed phase due to 3-dimensional fluid flow in this geometry. The results showed that the microfluidic device was capable of generating highly monodispersed spherical droplets (CV < 2% for step and CV < 5% for flow-focusing nozzle) with an average diameter in the range of 90-190 μm, both in step and flow-focusing nozzle. Moreover, it was proved that the device could adequately create a shelter for the dispersed phase regardless of the droplet formation locus. The ability of this microfluidic device in the production of microgels was validated by creating alginate microgels (with an average diameter of ~ 100 μm) through an external gelation process with on-chip calcium chloride emulsion in mineral oil.
Collapse
Affiliation(s)
- Hamed Shieh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mahnaz Eskandari
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Dariush Bastani
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|