1
|
Maxted G, Estrela P, Moschou D. Employing electrochemically derived pH gradients for Lab-on-PCB protein preconcentration devices. MICROSYSTEMS & NANOENGINEERING 2024; 10:10. [PMID: 38261896 PMCID: PMC10796359 DOI: 10.1038/s41378-023-00638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 01/25/2024]
Abstract
Protein preconcentration is an essential sample preparation step for analysis in which the targeted proteins exist in low concentrations, such as bodily fluids, water, or wastewater. Nonetheless, very few practical implementations of miniaturized protein preconcentration devices have been demonstrated in practice, and even fewer have been integrated with other microanalytical steps. Existing approaches rely heavily on additional chemicals and reagents and introduce complexity to the overall assay. In this paper, we propose a novel miniaturized isoelectric focusing-based protein preconcentration screening device based on electrochemically derived pH gradients rather than existing chemical reagent approaches. In this way, we reduce the need for additional chemical reagents to zero while enabling device incorporation in a seamlessly integrated full protein analysis microsystem via Lab-on-PCB technology. We apply our previously presented Lab-on-PCB approach to quantitatively control the pH of a solution in the vicinity of planar electrodes using electrochemical acid generation through redox-active self-assembled monolayers. The presented device comprises a printed circuit board with an array of gold electrodes that were functionalized with 4-aminothiophenol; this formed a self-assembled monolayer that was electropolymerized to improve its electrochemical reversibility. Protein preconcentration was performed in two configurations. The first was open and needed the use of a holder to suspend a well of fluid above the electrodes; the second used microfluidic channels to enclose small volumes of fluid. Reported here are the resulting data for protein preconcentration in both these forms, with a quantitative concentration factor shown for the open form and qualitative proof shown for the microfluidic.
Collapse
Affiliation(s)
- Grace Maxted
- Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY UK
- Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath, BA2 7AY UK
| | - Pedro Estrela
- Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY UK
- Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath, BA2 7AY UK
| | - Despina Moschou
- Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY UK
- Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath, BA2 7AY UK
| |
Collapse
|
2
|
Fakhr MH, Beshchasna N, Balakin S, Carrasco IL, Heitbrink A, Göhler F, Rösch N, Opitz J. Cleaning of LTCC, PEN, and PCB Au electrodes towards reliable electrochemical measurements. Sci Rep 2022; 12:20431. [PMID: 36443326 PMCID: PMC9705539 DOI: 10.1038/s41598-022-23395-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2022] Open
Abstract
Surface cleaning of the working electrode has a key role in improved electrochemical and physicochemical properties of the biosensors. Herein, chemical oxidation in piranha, chemical cleaning in potassium hydroxide-hydrogen peroxide, combined (electro-) chemical alkaline treatment, and potential cycling in sulfuric acid were applied to gold finish electrode surfaces deposited onto three different substrates; low temperature co-fired ceramics (LTCC), polyethylene naphthalate (PEN), and polyimide (PI), using three different deposition technologies; screen printing, inkjet printing, and electroplating (printed circuit board technology, PCB) accordingly. The effects of the (electro-) chemical treatments on the gold content and electrochemical responses of LTCC, PEN, and PCB applicable for aptamer-based sensors are discussed. In order to assess the gold surface and to compare the efficiency of the respective cleaning procedures; cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were employed. LTCC sensors electrochemically cycled in sulfuric acid resulted in the most gold content on the electrode surface, the lowest peak potential difference, and the highest charge transfer ability. While, for PEN, the highest elemental gold and the lowest peak-to-peak separation were achieved by a combined (electro-) chemical alkaline treatment. Gold content and electrochemical characteristics on the PCB surface with extremely thin gold layer could be slightly optimized with the chemical cleaning in KOH + H2O2. The proposed cleaning procedures might be generally applied to various kinds of Au electrodes fabricated with the same conditions comparable with those are introduced in this study.
Collapse
Affiliation(s)
- Mahan Hosseinzadeh Fakhr
- grid.461622.50000 0001 2034 8950Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany ,grid.6810.f0000 0001 2294 5505Institute of Physics, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Natalia Beshchasna
- grid.461622.50000 0001 2034 8950Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany
| | - Sascha Balakin
- grid.461622.50000 0001 2034 8950Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany
| | - Ivan Lopez Carrasco
- grid.461622.50000 0001 2034 8950Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany ,grid.4488.00000 0001 2111 7257Max Bergmann Center of Biomaterials (MBC), Technical University of Dresden, 01069 Dresden, Germany
| | - Alexander Heitbrink
- grid.461622.50000 0001 2034 8950Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany ,grid.4488.00000 0001 2111 7257Max Bergmann Center of Biomaterials (MBC), Technical University of Dresden, 01069 Dresden, Germany ,InnoME GmbH, 32339 Espelkamp, Germany
| | - Fabian Göhler
- grid.6810.f0000 0001 2294 5505Institute of Physics, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Niels Rösch
- grid.6810.f0000 0001 2294 5505Institute of Physics, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Joerg Opitz
- grid.461622.50000 0001 2034 8950Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany ,grid.4488.00000 0001 2111 7257Max Bergmann Center of Biomaterials (MBC), Technical University of Dresden, 01069 Dresden, Germany
| |
Collapse
|
3
|
Toldrà A, Ainla A, Khaliliazar S, Landin R, Chondrogiannis G, Hanze M, Réu P, Hamedi MM. Portable electroanalytical nucleic acid amplification tests using printed circuit boards and open-source electronics. Analyst 2022; 147:4249-4256. [PMID: 35993403 PMCID: PMC9511072 DOI: 10.1039/d2an00923d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/10/2022] [Indexed: 09/19/2023]
Abstract
The realization of electrochemical nucleic acid amplification tests (NAATs) at the point of care (POC) is highly desirable, but it remains a challenge given their high cost and lack of true portability/miniaturization. Here we show that mass-produced, industrial standardized, printed circuit boards (PCBs) can be repurposed to act as near-zero cost electrodes for self-assembled monolayer-based DNA biosensing, and further integration with a custom-designed and low-cost portable potentiostat. To show the analytical capability of this system, we developed a NAAT using isothermal recombinase polymerase amplification, bypassing the need of thermal cyclers, followed by an electrochemical readout relying on a sandwich hybridization assay. We used our sensor and device for analytical detection of the toxic microalgae Ostreopsis cf. ovata as a proof of concept. This work shows the potential of PCBs and open-source electronics to be used as powerful POC DNA biosensors at a low-cost.
Collapse
Affiliation(s)
- Anna Toldrà
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Alar Ainla
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Shirin Khaliliazar
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Roman Landin
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Georgios Chondrogiannis
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Martin Hanze
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Pedro Réu
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Mahiar M Hamedi
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| |
Collapse
|
4
|
Editorial for the Special Issue on Lab-on-PCB Devices. MICROMACHINES 2022; 13:mi13071001. [PMID: 35888818 PMCID: PMC9316257 DOI: 10.3390/mi13071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023]
|
5
|
Urbano-Gámez JD, Valdés-Sánchez L, Aracil C, de la Cerda B, Perdigones F, Plaza Reyes Á, Díaz-Corrales FJ, Relimpio López I, Quero JM. Biocompatibility Study of a Commercial Printed Circuit Board for Biomedical Applications: Lab-on-PCB for Organotypic Retina Cultures. MICROMACHINES 2021; 12:1469. [PMID: 34945319 PMCID: PMC8707730 DOI: 10.3390/mi12121469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022]
Abstract
Printed circuit board (PCB) technology is well known, reliable, and low-cost, and its application to biomedicine, which implies the integration of microfluidics and electronics, has led to Lab-on-PCB. However, the biocompatibility of the involved materials has to be examined if they are in contact with biological elements. In this paper, the solder mask (PSR-2000 CD02G/CA-25 CD01, Taiyo Ink (Suzhou) Co., Ltd., Suzhou, China) of a commercial PCB has been studied for retinal cultures. For this purpose, retinal explants have been cultured over this substrate, both on open and closed systems, with successful results. Cell viability data shows that the solder mask has no cytotoxic effect on the culture allowing the application of PCB as the substrate of customized microelectrode arrays (MEAs). Finally, a comparative study of the biocompatibility of the 3D printer Uniz zSG amber resin has also been carried out.
Collapse
Affiliation(s)
- Jesús David Urbano-Gámez
- Electronic Technology Group, Department of Electronic Engineering, Higher Technical School of Engineering, University of Seville, Avda. de los Descubrimientos sn, 41092 Seville, Spain; (J.D.U.-G.); (F.P.); (J.M.Q.)
| | - Lourdes Valdés-Sánchez
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Américo Vespucio 24, 41092 Seville, Spain; (L.V.-S.); (Á.P.R.); (F.J.D.-C.)
| | - Carmen Aracil
- Electronic Technology Group, Department of Electronic Engineering, Higher Technical School of Engineering, University of Seville, Avda. de los Descubrimientos sn, 41092 Seville, Spain; (J.D.U.-G.); (F.P.); (J.M.Q.)
| | - Berta de la Cerda
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Américo Vespucio 24, 41092 Seville, Spain; (L.V.-S.); (Á.P.R.); (F.J.D.-C.)
| | - Francisco Perdigones
- Electronic Technology Group, Department of Electronic Engineering, Higher Technical School of Engineering, University of Seville, Avda. de los Descubrimientos sn, 41092 Seville, Spain; (J.D.U.-G.); (F.P.); (J.M.Q.)
| | - Álvaro Plaza Reyes
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Américo Vespucio 24, 41092 Seville, Spain; (L.V.-S.); (Á.P.R.); (F.J.D.-C.)
| | - Francisco J. Díaz-Corrales
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Américo Vespucio 24, 41092 Seville, Spain; (L.V.-S.); (Á.P.R.); (F.J.D.-C.)
| | - Isabel Relimpio López
- RETICS Oftared, Carlos III Institute of Health (Spain), Ministry of Health RD16/0008/0010, University Hospital Virgen Macarena, Avda. Dr. Fedriani, 3, 41009 Seville, Spain;
| | - José Manuel Quero
- Electronic Technology Group, Department of Electronic Engineering, Higher Technical School of Engineering, University of Seville, Avda. de los Descubrimientos sn, 41092 Seville, Spain; (J.D.U.-G.); (F.P.); (J.M.Q.)
| |
Collapse
|