1
|
Chen W, Gai K, Luo X, Wu B, Wang X, Shi W, Zhang K, Lin F, Sun W, Song Y. 3D bioprinted in vitroepilepsy models for pharmacological evaluation in temporal lobe epilepsy. Biofabrication 2024; 17:015018. [PMID: 39454614 DOI: 10.1088/1758-5090/ad8b71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024]
Abstract
This study introduces a novelin vitromodel for intractable temporal lobe epilepsy (TLE) utilizing 3D bioprinting technology, aiming to replicate the complex neurobiological characteristics of TLE more accurately. Primary neural cell constructs were fabricated and subjected to epileptiform-inducing conditions, fostering synaptic proliferation and neuronal loss. Systematically electrophysiological and immunofluorescent analyses indicated that significant synaptic connectivity and sustained epileptiform activities within the constructs akin to those observed in human epilepsy models. Notably, the model responded to treatments with phenytoin and tetrodotoxin, illustrating its potential utility in drug response kinetics studies. Furthermore, we performed drug permeability simulations using COMSOL Multiphysics to analyze the diffusion characteristics of these drugs within the constructs. These results confirm that our 3D bioprinted neural model provides a physiologically relevant and ethically sustainable platform, which is beneficial for studying TLE mechanisms and developing therapeutic strategies with high accuracy and clinical relevance.
Collapse
Affiliation(s)
- Wei Chen
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ke Gai
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiao Luo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Bing Wu
- School of Engineering Medicine, 37 xueyuan road, Haidian District, Beijing 100084, People's Republic of China
| | - Xiu Wang
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, People's Republic of China
| | - Wei Shi
- School of Engineering Medicine, 37 xueyuan road, Haidian District, Beijing 100084, People's Republic of China
| | - Kai Zhang
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, People's Republic of China
| | - Feng Lin
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yu Song
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
2
|
Soltani Khaboushan A, Zafari R, Sabahi M, Khorasanizadeh M, Dabbagh Ohadi MA, Flouty O, Ranjan M, Slavin KV. Focused ultrasound for treatment of epilepsy: a systematic review and meta-analysis of preclinical and clinical studies. Neurosurg Rev 2024; 47:839. [PMID: 39521750 DOI: 10.1007/s10143-024-03078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Various preclinical and clinical studies have demonstrated the neuromodulatory and ablative effects of focused ultrasound (FUS). However, the safety and efficacy of FUS in clinical settings for treating epilepsy have not been well established. This study aims to provide a systematic review of all preclinical and clinical studies that have used FUS for the treatment of epilepsy. A systematic search was conducted using Scopus, Web of Science, PubMed, and Embase databases. All preclinical and clinical studies reporting outcomes of FUS in the treatment of epilepsy were included in the systematic review. Random-effect meta-analysis was performed to determine safety in clinical studies and seizure activity reduction in preclinical studies. A total of 24 articles were included in the study. Meta-analysis demonstrated that adverse events occurred in 13% (95% CI = 2-57%) of patients with epilepsy who underwent FUS. The frequency of adverse events was higher with the use of FUS for lesioning (36%, 95% CI = 4-88%) in comparison to neuromodulation (5%, 95% CI = 0-71%), although this difference was not significant (P = 0.31). Three-level meta-analysis in preclinical studies demonstrated a reduced spike rate in neuromodulating FUS compared to the control group (P = 0.02). According to this systematic review and meta-analysis, FUS can be considered a safe and feasible approach for treating epileptic seizures, especially in drug-resistant patients. While the efficacy of FUS has been demonstrated in several preclinical studies, further research is necessary to confirm its effectiveness in clinical practice and to determine the adverse events.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasa Zafari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadmahdi Sabahi
- Department of Neurological Surgery, Pauline Braathen Neurological Centre, Cleveland Clinic Florida, Weston, FL, USA
| | - MirHojjat Khorasanizadeh
- Department of Neurosurgery, Mount Sinai Hospital, Icahn School of Medicine, New York City, NY, USA
| | - Mohammad Amin Dabbagh Ohadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Manish Ranjan
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Konstantin V Slavin
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Lea-Banks H, Chauhan N, Hynynen K. Investigating the hypotensive effect of focused ultrasound neuromodulation and barbiturate-loaded nanodroplets in healthy and hypertensive rats. Brain Stimul 2024; 17:1317-1327. [PMID: 39643112 DOI: 10.1016/j.brs.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Current strategies for reducing blood pressure (BP) are ineffective and unsafe for many patient populations, including drug-resistant hypertension and during pregnancy. Stimulating the periaqueductal grey (PAG) region has shown promise in treating drug-resistant hypertension in patients using deep brain stimulation. OBJECTIVE To develop a minimally invasive neuromodulation technique for the sustained treatment of hypertension. METHODS We have investigated BP reduction using focused ultrasound (FUS) (540 kHz) and anesthetic-loaded ultrasound-responsive nanodroplets to deliver pentobarbital to the PAG in normotensive (N = 27) and hypertensive (N = 20) male and female rats. BP, heart rate and plasma hormone content were collected before and after FUS exposure, and neuronal activity was mapped in the PAG using C-Fos and neuron subtype staining. Cavitation activity was monitored by detecting acoustic emissions from vaporizing nanodroplets, and neuromodulation was verified with immunohistochemistry. RESULTS Systolic and diastolic BP were reduced for 6 h following a single sonication of the PAG (-37/-28 mmHg systolic/diastolic), and the offline effect was extended to 4 days with consecutive sonications combined with systemically injected pentobarbital-loaded nanodroplets. In contrast, FUS applied to the frontal cortex had no effect on BP. Immunohistochemistry revealed stimulation of inhibitory neurons in the PAG region, indicating that the hypotensive effect was associated with a GABAergic pathway. The acoustic emissions from vaporizing droplets were found to correlate with neuron activity and change in BP, offering the potential for real-time treatment monitoring using ultrasound. CONCLUSIONS This work has implications for developing a new treatment for hypertension that has greater safety and broader applicability for vulnerable patient populations.
Collapse
Affiliation(s)
- Harriet Lea-Banks
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada.
| | - Neha Chauhan
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Wei C, Zhang Z, Wang X, Lu H, Yu J. Editorial for the Special Issue on Fundamentals and Applications of Micro/Nanorobotics. MICROMACHINES 2024; 15:1303. [PMID: 39597115 PMCID: PMC11596912 DOI: 10.3390/mi15111303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
In recent years, microrobots have drawn extensive attention due to their promising potential in biomedical applications [...].
Collapse
Affiliation(s)
- Chunyun Wei
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China;
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhuoran Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China;
| | - Xian Wang
- Department of Mechanical and Materials Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Haojian Lu
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China;
| |
Collapse
|
5
|
Katlowitz KA, Curry DJ, Weiner HL. Novel Surgical Approaches in Childhood Epilepsy: Laser, Brain Stimulation, and Focused Ultrasound. Adv Tech Stand Neurosurg 2024; 49:291-306. [PMID: 38700689 DOI: 10.1007/978-3-031-42398-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Pediatric epilepsy has a worldwide prevalence of approximately 1% (Berg et al., Handb Clin Neurol 111:391-398, 2013) and is associated with not only lower quality of life but also long-term deficits in executive function, significant psychosocial stressors, poor cognitive outcomes, and developmental delays (Schraegle and Titus, Epilepsy Behav 62:20-26, 2016; Puka and Smith, Epilepsia 56:873-881, 2015). With approximately one-third of patients resistant to medical control, surgical intervention can offer a cure or palliation to decrease the disease burden and improve neurological development. Despite its potential, epilepsy surgery is drastically underutilized. Even today only 1% of the millions of epilepsy patients are referred annually for neurosurgical evaluation, and the average delay between diagnosis of Drug Resistant Epilepsy (DRE) and surgical intervention is approximately 20 years in adults and 5 years in children (Solli et al., Epilepsia 61:1352-1364, 2020). It is still estimated that only one-third of surgical candidates undergo operative intervention (Pestana Knight et al., Epilepsia 56:375, 2015). In contrast to the stable to declining rates of adult epilepsy surgery (Englot et al., Neurology 78:1200-1206, 2012; Neligan et al., Epilepsia 54:e62-e65, 2013), rates of pediatric surgery are rising (Pestana Knight et al., Epilepsia 56:375, 2015). Innovations in surgical approaches to epilepsy not only minimize potential complications but also expand the definition of a surgical candidate. In this chapter, three alternatives to classical resection are presented. First, laser ablation provides a minimally invasive approach to focal lesions. Next, both central and peripheral nervous system stimulation can interrupt seizure networks without creating permanent lesions. Lastly, focused ultrasound is discussed as a potential new avenue not only for ablation but also modulation of small, deep foci within seizure networks. A better understanding of the potential surgical options can guide patients and providers to explore all treatment avenues.
Collapse
Affiliation(s)
- Kalman A Katlowitz
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Texas Children's Hospital, Houston, TX, USA
| | - Daniel J Curry
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Texas Children's Hospital, Houston, TX, USA
| | - Howard L Weiner
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Department of Neurosurgery, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
6
|
Cornelssen C, Finlinson E, Rolston JD, Wilcox KS. Ultrasonic therapies for seizures and drug-resistant epilepsy. Front Neurol 2023; 14:1301956. [PMID: 38162441 PMCID: PMC10756913 DOI: 10.3389/fneur.2023.1301956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024] Open
Abstract
Ultrasonic therapy is an increasingly promising approach for the treatment of seizures and drug-resistant epilepsy (DRE). Therapeutic focused ultrasound (FUS) uses thermal or nonthermal energy to either ablate neural tissue or modulate neural activity through high- or low-intensity FUS (HIFU, LIFU), respectively. Both HIFU and LIFU approaches have been investigated for reducing seizure activity in DRE, and additional FUS applications include disrupting the blood-brain barrier in the presence of microbubbles for targeted-drug delivery to the seizure foci. Here, we review the preclinical and clinical studies that have used FUS to treat seizures. Additionally, we review effective FUS parameters and consider limitations and future directions of FUS with respect to the treatment of DRE. While detailed studies to optimize FUS applications are ongoing, FUS has established itself as a potential noninvasive alternative for the treatment of DRE and other neurological disorders.
Collapse
Affiliation(s)
- Carena Cornelssen
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
| | - Eli Finlinson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
| | - John D. Rolston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Karen S. Wilcox
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
7
|
Lescrauwaet E, Vonck K, Sprengers M, Raedt R, Klooster D, Carrette E, Boon P. Recent Advances in the Use of Focused Ultrasound as a Treatment for Epilepsy. Front Neurosci 2022; 16:886584. [PMID: 35794951 PMCID: PMC9251412 DOI: 10.3389/fnins.2022.886584] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Epilepsy affects about 1% of the population. Approximately one third of patients with epilepsy are drug-resistant (DRE). Resective surgery is an effective treatment for DRE, yet invasive, and not all DRE patients are suitable resective surgery candidates. Focused ultrasound, a novel non-invasive neurointerventional method is currently under investigation as a treatment alternative for DRE. By emitting one or more ultrasound waves, FUS can target structures in the brain at millimeter resolution. High intensity focused ultrasound (HIFU) leads to ablation of tissue and could therefore serve as a non-invasive alternative for resective surgery. It is currently under investigation in clinical trials following the approval of HIFU for essential tremor and Parkinson’s disease. Low intensity focused ultrasound (LIFU) can modulate neuronal activity and could be used to lower cortical neuronal hyper-excitability in epilepsy patients in a non-invasive manner. The seizure-suppressive effect of LIFU has been studied in several preclinical trials, showing promising results. Further investigations are required to demonstrate translation of preclinical results to human subjects.
Collapse
Affiliation(s)
- Emma Lescrauwaet
- 4Brain Lab, Department of Neurology, Ghent University Hospital, Ghent, Belgium
- *Correspondence: Emma Lescrauwaet,
| | - Kristl Vonck
- 4Brain Lab, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Mathieu Sprengers
- 4Brain Lab, Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Robrecht Raedt
- 4Brain Lab, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Debby Klooster
- 4Brain Lab, Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Evelien Carrette
- 4Brain Lab, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Paul Boon
- 4Brain Lab, Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
8
|
Chen D, Cui X, Zhang Q, Li D, Cheng W, Fei C, Yang Y. A Survey on Analog-to-Digital Converter Integrated Circuits for Miniaturized High Resolution Ultrasonic Imaging System. MICROMACHINES 2022; 13:mi13010114. [PMID: 35056279 PMCID: PMC8779678 DOI: 10.3390/mi13010114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 01/27/2023]
Abstract
As traditional ultrasonic imaging systems (UIS) are expensive, bulky, and power-consuming, miniaturized and portable UIS have been developed and widely utilized in the biomedical field. The performance of integrated circuits (ICs) in portable UIS obviously affects the effectiveness and quality of ultrasonic imaging. In the ICs for UIS, the analog-to-digital converter (ADC) is used to complete the conversion of the analog echo signal received by the analog front end into digital for further processing by a digital signal processing (DSP) or microcontroller unit (MCU). The accuracy and speed of the ADC determine the precision and efficiency of UIS. Therefore, it is necessary to systematically review and summarize the characteristics of different types of ADCs for UIS, which can provide valuable guidance to design and fabricate high-performance ADC for miniaturized high resolution UIS. In this paper, the architecture and performance of ADC for UIS, including successive approximation register (SAR) ADC, sigma-delta (Σ-∆) ADC, pipelined ADC, and hybrid ADC, have been systematically introduced. In addition, comparisons and discussions of different types of ADCs are presented. Finally, this paper is summarized, and presents the challenges and prospects of ADC ICs for miniaturized high resolution UIS.
Collapse
Affiliation(s)
| | | | | | - Di Li
- Correspondence: (D.L.); (W.C.); Tel.: +86-137-0925-0163 (D.L.); +86-152-3193-6291 (W.C.)
| | - Wenyang Cheng
- Correspondence: (D.L.); (W.C.); Tel.: +86-137-0925-0163 (D.L.); +86-152-3193-6291 (W.C.)
| | | | | |
Collapse
|