1
|
Mejía-Salazar JR, Oliveira ON. Plasmonic nanoarchitectured systems for biomedical application. Adv Colloid Interface Sci 2025; 342:103520. [PMID: 40267654 DOI: 10.1016/j.cis.2025.103520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
In this paper we discuss the latest developments in colloidal plasmonics, a field with over a century of history, applied to the biomedical sector. Emphasis is placed on the nanoarchitectonic nature of plasmonic systems that can be used for sensing, drug delivery and manipulation of biomolecules. For instance, quantum effects linked to plasmonic phenomena are being used to enhance monitoring of chiral particles and their interaction with light, which is essential for the pharmaceutical industry in reaching the required enantiopurity in some drugs. In diagnostics, radiofrequency waves can excite surface plasmon resonance through amplified photoacoustic effects, thus permitting thermo-acoustic imaging. An example of enhanced therapy was introduced in carefully designed nanoarchitectures where a multi-branched gold nanooctopus was surrounded by a mesoporous polydopamine and loaded with ribonucleoproteins for the target delivery into tumor cells. Moreover, the longstanding challenge of heating due to Ohmic losses, which has hindered the use of plasmonic tweezers for manipulating biologically relevant analytes, is now being exploited for enhanced trapping, manipulation, and transport of cells and other biological particles. The combination of magnetic materials and plasmonic colloids in the realms of magnetoplasmonics can also be explored in sensing and enhanced drug delivery, which further exemplifies the versatility of nanoarchitectonics.
Collapse
Affiliation(s)
| | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, CP 369, 13560-970, SP, Brazil.
| |
Collapse
|
2
|
Xue C, Yin Y, Xu X, Tian K, Su J, Hu G. Particle manipulation under X-force fields. LAB ON A CHIP 2025; 25:956-978. [PMID: 39774586 DOI: 10.1039/d4lc00794h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Particle manipulation is a central technique that enhances numerous scientific and medical applications by exploiting micro- and nanoscale control within fluidic environments. In this review, we systematically explore the multifaceted domain of particle manipulation under the influence of various X-force fields, integral to lab-on-a-chip technologies. We dissect the fundamental mechanisms of hydrodynamic, gravitational, optical, magnetic, electrical, and acoustic forces and detail their individual and synergistic applications. In particular, our discourse extends to advanced multi-modal manipulation strategies that harness the combined power of these forces, revealing their enhanced efficiency and precision in complex assays and diagnostic frameworks. The integration of cutting-edge technologies such as artificial intelligence and autonomous systems further enhances the capabilities of these microfluidic platforms, leading to transformative innovations in personalized medicine and point-of-care diagnostics. This review not only highlights current technological advances, but also forecasts the trajectory of future developments, emphasizing the escalating precision and scalability essential for advancing lab-on-a-chip applications.
Collapse
Affiliation(s)
- Chundong Xue
- Institute of Cardio-cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian 116033, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Yifan Yin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Xiaoyu Xu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Kai Tian
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jinghong Su
- Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Guoqing Hu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
3
|
Oushyani Roudsari Z, Esmaeili Z, Nasirzadeh N, Heidari Keshel S, Sefat F, Bakhtyari H, Nadri S. Microfluidics as a promising technology for personalized medicine. BIOIMPACTS : BI 2024; 15:29944. [PMID: 39963565 PMCID: PMC11830131 DOI: 10.34172/bi.29944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 02/20/2025]
Abstract
Introduction Due to the recent advances in biomedicine and the increasing understanding of the molecular mechanism of diseases, healthcare approaches have tended towards preventive and personalized medicine. Consequently, in recent decades, the utilization of interdisciplinary technologies such as microfluidic systems had a significant increase to provide more accurate high throughput diagnostic/therapeutic methods. Methods In this article, we will review a summary of innovations in microfluidic technologies toward improving personalized biomolecular diagnostics, drug screening, and therapeutic strategies. Results Microfluidic systems by providing a controllable space for fluid flow, three-dimensional growth of cells, and miniaturization of molecular experiments are useful tools in the field of personalization of health and treatment. These conditions have enabled the potential to carry out studies like; disease modeling, drug screening, and improving the accuracy of diagnostic methods. Conclusion Microfluidic devices have become promising point-of-care (POC) and personalized medicine instruments due to their ability to perform diagnostic tests with small sample volumes, cost reduction, high resolution, and automation.
Collapse
Affiliation(s)
- Zahra Oushyani Roudsari
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Esmaeili
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nafiseh Nasirzadeh
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| | - Hassan Bakhtyari
- Department of Pediatrics, School of Medicine, Ayatollah Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
4
|
Chen D, Xu W, Lu Y, Zhuo Y, Ji T, Long F. Rapid and sensitive parallel on-site detection of antibiotics and resistance genes in aquatic environments using evanescent wave dual-color fluorescence fiber-embedded optofluidic nanochip. Biosens Bioelectron 2024; 257:116281. [PMID: 38677021 DOI: 10.1016/j.bios.2024.116281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Environmental antibiotics and antibiotic resistance genes (ARGs) pose considerable threat to humans and animals; thus, the rapid and sensitive parallel detection of these pollutants from a single sample is urgently required. However, traditional multiplexed analytic technologies detect only one type of target (e.g., small molecules or nucleic acids) per assay. To address this issue, Evanescent wave Dual-color fluorescence Fiber-embedded Optofluidic Nanochip (EDFON) was fabricated by integrating a fiber-embedded optofluidic nanochip with evanescent wave dual-color fluorescence technology. The EDFON was used for the parallel quantitative detection of sulfamerazine (SMR) and MCR-1 with high sensitivity and specificity by combining a heterogeneous immunoassay with a homogenous hybridization chain reaction based on time-resolved effects. LODs of 0.032 μg/L and 35 pM was obtained for SMR and MCR-1, respectively, within 20 min. To our best knowledge, the EDFON is the first device for the simultaneous detection of two type of targets in each test, which is highly valuable to prevent the global threats of antibiotics and ARGs. Comparison with liquid chromatography-mass spectrometry showed a strong linear relationship (R2 = 0.998) for SMR pollution in the Qinghe River, with spiked SMR and MCR-1 negative surface and wastewater samples showing recovery rates of 91.8-113.4%. These results demonstrate the excellent accuracy and reliability of the EDFON, with features such as multi-analyte detection, field-deployment, and minimal-equipment, rendering it revolutionary for environmental monitoring, food safety, and medical diagnostics.
Collapse
Affiliation(s)
- Dan Chen
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Wenjuan Xu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Yongkai Lu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Yuxin Zhuo
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Tianxiang Ji
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
5
|
Fortuna L, Buscarino A. Microrobots in Micromachines. MICROMACHINES 2022; 13:mi13081207. [PMID: 36014128 PMCID: PMC9414954 DOI: 10.3390/mi13081207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/08/2023]
Affiliation(s)
- Luigi Fortuna
- Dipartimento di Ingegneria Elettrica Elettronica e Informatica, University of Catania, 95124 Catania, CT, Italy;
- IASI, Consiglio Nazionale delle Ricerche (CNR), 00185 Roma, RM, Italy
- Correspondence:
| | - Arturo Buscarino
- Dipartimento di Ingegneria Elettrica Elettronica e Informatica, University of Catania, 95124 Catania, CT, Italy;
- IASI, Consiglio Nazionale delle Ricerche (CNR), 00185 Roma, RM, Italy
| |
Collapse
|
6
|
All-in-One Optofluidic Chip for Molecular Biosensing Assays. BIOSENSORS 2022; 12:bios12070501. [PMID: 35884304 PMCID: PMC9313335 DOI: 10.3390/bios12070501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022]
Abstract
Integrated biosensor platforms have become subjects of high interest for consolidated assay preparation and analysis to reduce sample-to-answer response times. By compactly combining as many biosensor processes and functions as possible into a single lab-on-chip device, all-in-one point-of-care devices can aid in the accessibility and speed of deployment due to their compact size and portability. Biomarker assay preparation and sensing are functionalities that are often carried out on separate devices, thus increasing opportunity of contamination, loss of sample volume, and other forms of error. Here, we demonstrate a complete lab-on-chip system combining sample preparation, on-chip optofluidic dye laser, and optical detection. We first show the integration of an on-chip distributed feedback dye laser for alignment-free optical excitation of particles moving through a fluidic channel. This capability is demonstrated by using Rhodamine 6G as the gain medium to excite single fluorescent microspheres at 575 nm. Next, we present an optofluidic PDMS platform combining a microvalve network (automaton) for sample preparation of nanoliter volumes, on-chip distributed feedback dye laser for target excitation, and optical detection. We conduct concurrent capture and fluorescence tagging of Zika virus nucleic acid on magnetic beads in 30 min. Target-carrying beads are then optically excited using the on-chip laser as they flow through an analysis channel, followed by highly specific fluorescence detection. This demonstration of a complete all-in-one biosensor is a tangible step in the development of a rapid, point-of-care device that can assist in limiting the severity of future outbreaks.
Collapse
|