1
|
Xue C, Yin Y, Xu X, Tian K, Su J, Hu G. Particle manipulation under X-force fields. LAB ON A CHIP 2025; 25:956-978. [PMID: 39774586 DOI: 10.1039/d4lc00794h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Particle manipulation is a central technique that enhances numerous scientific and medical applications by exploiting micro- and nanoscale control within fluidic environments. In this review, we systematically explore the multifaceted domain of particle manipulation under the influence of various X-force fields, integral to lab-on-a-chip technologies. We dissect the fundamental mechanisms of hydrodynamic, gravitational, optical, magnetic, electrical, and acoustic forces and detail their individual and synergistic applications. In particular, our discourse extends to advanced multi-modal manipulation strategies that harness the combined power of these forces, revealing their enhanced efficiency and precision in complex assays and diagnostic frameworks. The integration of cutting-edge technologies such as artificial intelligence and autonomous systems further enhances the capabilities of these microfluidic platforms, leading to transformative innovations in personalized medicine and point-of-care diagnostics. This review not only highlights current technological advances, but also forecasts the trajectory of future developments, emphasizing the escalating precision and scalability essential for advancing lab-on-a-chip applications.
Collapse
Affiliation(s)
- Chundong Xue
- Institute of Cardio-cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian 116033, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Yifan Yin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Xiaoyu Xu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Kai Tian
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jinghong Su
- Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Guoqing Hu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
2
|
Cheng X, Wang C, Yang J, Liu D, Liao Y, Wang B, Han S, Zhang X, Zheng H, Lu Y. Nanotransducer-Enabled Wireless Spatiotemporal Tuning of Engineered Bacteria in Bumblebee. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301064. [PMID: 37127882 DOI: 10.1002/smll.202301064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Bumblebees are essential pollinators of wild-flowering plants and crops. It is noticed that regulating the gut microorganisms of bumblebees is of great significance for the maintenance of bumblebee health and disease treatment. Additionally, social bees are used as models to study regulatory control methods of gut bacteria in vivo. However, these methods lack precision and are not studied in bumblebees. In this study, nanotransducers are used for wireless spatiotemporal tuning of engineered bacteria in bumblebees. These nanotransducers are designed as 1D chains with smooth surfaces for easy transport in vivo, and temperature-controlled engineered bacteria colonize the guts of microbial-free bumblebees. Thermal production in the bumblebee gut is achieved using magnetothermal and photothermal methods in response to nanotransducers, resulting in significant target protein upregulation in engineered bacteria in the bumblebee gut. This advanced technology enables the precise control of engineered bacteria in the bumblebee gut. It also lays the foundation for the treatment of bumblebee intestinal parasitic diseases and the elimination of pesticide residues.
Collapse
Affiliation(s)
- Xiaowen Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chen Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Junzhu Yang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Dong Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuting Liao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Bin Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xue Zhang
- College of Plant Protection, China Agricultural University, Beijing, 100083, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|