1
|
Thirumurugan A, Kamaraj SK, Rednam U, Raju R. Editorial for the Special Issue on Sustainable Materials for Energy and Environmental Applications. MICROMACHINES 2024; 15:1099. [PMID: 39337759 PMCID: PMC11433859 DOI: 10.3390/mi15091099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Sustainable environmental management is an urgent problem that calls for innovative solutions to the problem of protecting and preserving the natural resources and ecosystems of the planet [...].
Collapse
Affiliation(s)
| | - Sathish Kumar Kamaraj
- Instituto Politécnico Nacional (IPN)-Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA-Altamira), Carretera Tampico-Puerto Industrial Altamira Km14.5, C. Manzano, Industrial Altamira, Altamira 89600, Tamaulipas, Mexico;
| | - Udayabhaskar Rednam
- Departamento de Mecánica, Facultad de Ingeniería, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile;
| | - Ramesh Raju
- Department of Electrical and Nanoengineering, Aalto University, Tietotie 3, 02150 Espoo, Finland;
| |
Collapse
|
2
|
Ahmed MA, Mahmoud SA, Mohamed AA. Unveiling the photocatalytic potential of graphitic carbon nitride (g-C 3N 4): a state-of-the-art review. RSC Adv 2024; 14:25629-25662. [PMID: 39148759 PMCID: PMC11325859 DOI: 10.1039/d4ra04234d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Graphitic carbon nitride (g-C3N4)-based materials have emerged as promising photocatalysts due to their unique band structure, excellent stability, and environmental friendliness. This review provides a comprehensive and in-depth analysis of the current state of research on g-C3N4-based photocatalysts. The review summarizes several strategies to improve the photocatalytic performance of pristine g-C3N4, e.g., by creating heterojunctions, doping with non-metallic and metallic materials, co-catalyst loading, tuning catalyst morphology, metal deposition, and nitrogen-defect engineering. The review also highlights the various characterization techniques employed to elucidate the structural and physicochemical features of g-C3N4-based catalysts, as well as their applications of in photocatalytic degradation and hydrogen production, emphasizing their remarkable performance in pollutants' removal and clean energy generation. Furthermore, this review article investigates the effect of operational parameters on the catalytic activity and efficiency of g-C3N4-based catalysts, shedding light on the key factors that influence their performance. The review also provides insights into the photocatalytic pathways and reaction mechanisms involving g-C3N4 based photocatalysts. The review also identifies the research gaps and challenges in the field and presents prospects for the development and utilization of g-C3N4-based photocatalysts. Overall, this comprehensive review provides valuable insights into the synthesis, characterization, applications, and prospects of g-C3N4-based photocatalysts, offering guidance for future research and technological advancements in this rapidly growing field.
Collapse
Affiliation(s)
- Mahmoud A Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
| | - Safwat A Mahmoud
- Physics Department, Faculty of Science, Northern Border University Arar 13211 Saudi Arabia
| | - Ashraf A Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
| |
Collapse
|
3
|
Priya BS, Kumaravel S, Alagarasan JK, Devanesan S, Viji A, Lee M, Shanthi M. Solar-activated and hydrothermally synthesized effective rGO/Ag 2S composites for the destruction of naphthol green B dye and antibacterial applications. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:95. [PMID: 38374258 DOI: 10.1007/s10653-024-01876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024]
Abstract
Graphene-based nanocomposites are developing as a new class of materials with several uses. The varied weight percentages of rGO on Ag2S catalysts were synthesized using a simple hydrothermal process and employed for the decomposition of anionic dye naphthol green B (NGB) under solar light. The reduced graphene oxide-based silver sulfide (rGO/Ag2S) nanoparticles were then examined using XRD, SEM, EDS, HR-TEM, XPS, UV-DRS, and PL analysis. Using solar light, the photocatalytic activity of the produced catalyst was examined for the degradation of naphthol green B (NGB) in an aqueous solution. At pH 9, rGO/Ag2S is discovered to be more effective than the other catalysts for the NGB dye mineralization. Analyses have been conducted on the influence of operational parameters on the photo-mineralization of NGB, including the initial pH, initial dye concentration, and catalyst dosage. The dye concentration increased; the efficiency of photocatalytic degradation tended to decrease. Chemical oxygen demand (COD) studies have verified the NGB dye mineralization. Active species trapping revealed that holes, hydroxyl radicals, and superoxide radicals all played major roles in the photocatalytic deterioration of NGB processes. Additionally, a potential mechanism of NGB dye degradation by rGO/Ag2S catalyst is presented. The synthesized compound was further evaluated for antibacterial activity, and the results indicated that rGO/Ag2S were potentially effective antibacterial agents.
Collapse
Affiliation(s)
- B Sathya Priya
- Department of Chemistry, Annamalai University, Annamalainagar, Tamil Nadu, 608002, India
| | - Sakthivel Kumaravel
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea
| | | | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - A Viji
- Department of Physics, Kongunadu College of Engineering and Technology, Thottiyam, Tamil Nadu, 621215, India
| | - Moonyong Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan-Si, 38541, Republic of Korea.
| | - M Shanthi
- Department of Chemistry, Annamalai University, Annamalainagar, Tamil Nadu, 608002, India.
| |
Collapse
|
4
|
Kumaravel S, Avula B, Chandrasatheesh C, Niyitanga T, Saranya R, Hasan I, Abisheik T, Rai RS, Pandiyan V, Balu K. Rational construction of MOF derived α-Fe 2O 3/g-C 3N 4 composite for effective photocatalytic degradation of organic pollutants and electrocatalytic oxygen evolution reaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123972. [PMID: 38306923 DOI: 10.1016/j.saa.2024.123972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/20/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
In recent years, researchers have been actively investigating metal oxide-based materials with narrow bandgaps due to their potential applications toward wastewater treatment and oxygen evolution reactions (OER). In this study, we successfully synthesized g-C3N4 (GCN), Fe2O3, and Fe2O3/g-C3N4 (FGCN) using thermal polymerization and hydrothermal methods. We characterized the physicochemical and structural properties of these materials through various analytical techniques including XRD, FT-IR, UV-DRS, XPS, FE-SEM, and HR-TEM analyses, confirming the effective construction of the FGCN composite catalyst. We evaluated the photocatalytic activity of Fe2O3, GCN, and FGCN composite catalysts by assessing their ability to degrade rhodamine B (RhB) and crystal violet (CV) by exposing them to sunlight for 150 min. Among these catalysts, the FGCN composite demonstrated excellent photocatalytic performance, achieving 93 % and 95 % degradation of RhB and CV, respectively, under 150 min of sunlight exposure. The developed Fe2O3/g-C3N4@Nickel foam (FGCN@NF) composite catalyst exhibits remarkable OER performance, with a reduced Tafel slope of 64 mV/dec and a low overpotential of 290 mV at a current density of 10 mA/cm2 and shows excellent durable performance over a long time (15 h). Total Organic Carbon (TOC) analysis confirmed the mineralization of both dyes. The photocatalytic performance remained largely unchanged after five consecutive experiments, demonstrating excellent reusability and photostability. Trapping experiments revealed that O2●- is the main species responsible for the photocatalytic decomposition of various dyes by the FGCN composite catalyst. Therefore, the development of a versatile photo/electrocatalytic system that can efficiently promote energy conversion in environmental applications has attracted great attention.
Collapse
Affiliation(s)
- Sakthivel Kumaravel
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Balakrishna Avula
- Department of Chemistry, Rajeev Gandhi Memorial College of Engineering and Technology (Autonomous), Nandyal, Andhra Pradesh 518501, India
| | | | - Theophile Niyitanga
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Rajasekar Saranya
- Department of Biotechnology, SRM Institute of Science and Technology, Ramapuram, Chennai 600089, Tamil Nadu, India
| | - Imran Hasan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - T Abisheik
- Department of Physics, Nehru Memorial College (Autonomous), Puthanampatti (Affiliated to Bharathidasan University), Tiruchirappalli 621007, Tamil Nadu, India
| | - Rajakumar S Rai
- Division of Mechanical Engineering, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore 641114, Tamil Nadu, India
| | - V Pandiyan
- Department of Physics, Nehru Memorial College (Autonomous), Puthanampatti (Affiliated to Bharathidasan University), Tiruchirappalli 621007, Tamil Nadu, India
| | - Krishnakumar Balu
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India; Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, E.T.S. de Ingenieros, Universidad de Sevilla, Avda. Camino de los Descubrimientos s/n., 41092 Sevilla, Spain.
| |
Collapse
|