1
|
Wu T, Yan J, Nie K, Chen Y, Wu Y, Wang S, Zhang J. Microfluidic chips in female reproduction: a systematic review of status, advances, and challenges. Theranostics 2024; 14:4352-4374. [PMID: 39113805 PMCID: PMC11303079 DOI: 10.7150/thno.97301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/06/2024] [Indexed: 08/10/2024] Open
Abstract
The female reproductive system is essential to women's health, human reproduction and societal well-being. However, the clinical translation of traditional research models is restricted due to the uncertain effects and low efficiency. Emerging evidence shows that microfluidic chips provide valuable platforms for studying the female reproductive system, while no paper has ever comprehensively discussed the topic. Here, a total of 161 studies out of 14,669 records are identified in PubMed, Scopus, Web of Science, ScienceDirect and IEEE Xplore databases. Among these, 61 studies focus on oocytes, which further involves culture, cell surgeries (oocyte separation, rotation, enucleation, and denudation), evaluation and cryopreservation. Forty studies investigate embryo manipulation via microfluidic chips, covering in vitro fertilization, cryopreservation and functional evaluation. Forty-six studies reconstitute both the physiological and pathological statuses of in vivo organs, mostly involved in placenta and fetal membrane research. Fourteen studies perform drug screening and toxicity testing. In this review, we summarize the current application of microfluidic chips in studying the female reproductive system, the advancements in materials and methods, and discuss the future challenges. The present evidence suggests that microfluidic chips-assisted reproductive system reconstruction is promising and more studies are urgently needed.
Collapse
Affiliation(s)
- Tong Wu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinfeng Yan
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Kebing Nie
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Ma J, Xie Q, Zhang Y, Xiao Q, Liu X, Qiao C, Tian Y. Advances in microfluidic technology for sperm screening and in vitro fertilization. Anal Bioanal Chem 2024; 416:3717-3735. [PMID: 38189916 DOI: 10.1007/s00216-023-05120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
About 18% of reproductive-age adults worldwide are affected by infertility. In vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) are widely used assisted reproductive technologies (ARTs) aimed at improving clinical outcomes. Efficient and noninvasive selection and isolation of highly motile sperm with intact DNA are essential for the success of IVF and ICSI and can potentially impact the therapeutic efficacy and the health of the offspring. Compared to traditional methods, microfluidic technology offers significant advantages such as low sample consumption, high efficiency, minimal damage, high integration, similar microenvironment, and high automation, providing a new platform for ARTs. Here, we review the current situation of microfluidic technology in the field of sperm motility screening and evaluation and IVF research. First, we focus on the working principle, structural design, and screening results of sperm selection microfluidic platforms. We then highlight how the multiple steps of the IVF process can be facilitated and integrated into a microfluidic chip, including oocyte capture, sperm collection and isolation, sperm sorting, fertilization, and embryo culture. Ultimately, we summarize how microfluidics can complement and optimize current sperm sorting and IVF protocols, and challenges and possible solutions are discussed.
Collapse
Affiliation(s)
- Jingtong Ma
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Qianlin Xie
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Yusongjia Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Qirui Xiao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynaecology, General Hospital of Northern Theater Command, Shenyang, 110003, China.
| | - Chong Qiao
- Department of Obstetrics and Gynecology of Shengjing Hospital of China Medical University, Shenyang, 110022, China.
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, 110022, China.
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528300, China.
| |
Collapse
|
3
|
Bouloorchi Tabalvandani M, Saeidpour Z, Habibi Z, Javadizadeh S, Firoozabadi SA, Badieirostami M. Microfluidics as an emerging paradigm for assisted reproductive technology: A sperm separation perspective. Biomed Microdevices 2024; 26:23. [PMID: 38652182 DOI: 10.1007/s10544-024-00705-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Millions of people are subject to infertility worldwide and one in every six people, regardless of gender, experiences infertility at some period in their life, according to the World Health Organization. Assisted reproductive technologies are defined as a set of procedures that can address the infertility issue among couples, culminating in the alleviation of the condition. However, the costly conventional procedures of assisted reproduction and the inherent vagaries of the processes involved represent a setback for its successful implementation. Microfluidics, an emerging tool for processing low-volume samples, have recently started to play a role in infertility diagnosis and treatment. Given its host of benefits, including manipulating cells at the microscale, repeatability, automation, and superior biocompatibility, microfluidics have been adopted for various procedures in assisted reproduction, ranging from sperm sorting and analysis to more advanced processes such as IVF-on-a-chip. In this review, we try to adopt a more holistic approach and cover different uses of microfluidics for a variety of applications, specifically aimed at sperm separation and analysis. We present various sperm separation microfluidic techniques, categorized as natural and non-natural methods. A few of the recent developments in on-chip fertilization are also discussed.
Collapse
Affiliation(s)
| | - Zahra Saeidpour
- MEMS Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 1439957131, Iran
| | - Zahra Habibi
- MEMS Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 1439957131, Iran
| | - Saeed Javadizadeh
- MEMS Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 1439957131, Iran
| | - Seyed Ahmadreza Firoozabadi
- MEMS Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 1439957131, Iran
| | - Majid Badieirostami
- MEMS Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 1439957131, Iran.
| |
Collapse
|
4
|
Ferraz MDAMM, Ferronato GDA. Opportunities involving microfluidics and 3D culture systems to the in vitro embryo production. Anim Reprod 2023; 20:e20230058. [PMID: 37638255 PMCID: PMC10449241 DOI: 10.1590/1984-3143-ar2023-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/29/2023] [Indexed: 08/29/2023] Open
Abstract
Traditional methods of gamete handling, fertilization, and embryo culture often face limitations in efficiency, consistency, and the ability to closely mimic in vivo conditions. This review explores the opportunities presented by microfluidic and 3D culture systems in overcoming these challenges and enhancing in vitro embryo production. We discuss the basic principles of microfluidics, emphasizing their inherent advantages such as precise control of fluid flow, reduced reagent consumption, and high-throughput capabilities. Furthermore, we delve into microfluidic devices designed for gamete manipulation, in vitro fertilization, and embryo culture, highlighting innovations such as droplet-based microfluidics and on-chip monitoring. Next, we explore the integration of 3D culture systems, including the use of biomimetic scaffolds and organ-on-a-chip platforms, with a particular focus on the oviduct-on-a-chip. Finally, we discuss the potential of these advanced systems to improve embryo production outcomes and advance our understanding of early embryo development. By leveraging the unique capabilities of microfluidics and 3D culture systems, we foresee significant advancements in the efficiency, effectiveness, and clinical success of in vitro embryo production.
Collapse
Affiliation(s)
- Marcia de Almeida Monteiro Melo Ferraz
- Faculty of Veterinary Medicine, Ludwig-Maximilians University of Munich, Oberschleißheim, Germany
- Gene Center, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Giuliana de Avila Ferronato
- Faculty of Veterinary Medicine, Ludwig-Maximilians University of Munich, Oberschleißheim, Germany
- Gene Center, Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
5
|
Recent advances in non-optical microfluidic platforms for bioparticle detection. Biosens Bioelectron 2023; 222:114944. [PMID: 36470061 DOI: 10.1016/j.bios.2022.114944] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
The effective analysis of the basic structure and functional information of bioparticles are of great significance for the early diagnosis of diseases. The synergism between microfluidics and particle manipulation/detection technologies offers enhanced system integration capability and test accuracy for the detection of various bioparticles. Most microfluidic detection platforms are based on optical strategies such as fluorescence, absorbance, and image recognition. Although optical microfluidic platforms have proven their capabilities in the practical clinical detection of bioparticles, shortcomings such as expensive components and whole bulky devices have limited their practicality in the development of point-of-care testing (POCT) systems to be used in remote and underdeveloped areas. Therefore, there is an urgent need to develop cost-effective non-optical microfluidic platforms for bioparticle detection that can act as alternatives to optical counterparts. In this review, we first briefly summarise passive and active methods for bioparticle manipulation in microfluidics. Then, we survey the latest progress in non-optical microfluidic strategies based on electrical, magnetic, and acoustic techniques for bioparticle detection. Finally, a perspective is offered, clarifying challenges faced by current non-optical platforms in developing practical POCT devices and clinical applications.
Collapse
|
6
|
Karcz A, Van Soom A, Smits K, Verplancke R, Van Vlierberghe S, Vanfleteren J. Electrically-driven handling of gametes and embryos: taking a step towards the future of ARTs. LAB ON A CHIP 2022; 22:1852-1875. [PMID: 35510672 DOI: 10.1039/d1lc01160j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrical stimulation of gametes and embryos and on-chip manipulation of microdroplets of culture medium serve as promising tools for assisted reproductive technologies (ARTs). Thus far, dielectrophoresis (DEP), electrorotation (ER) and electrowetting on dielectric (EWOD) proved compatible with most laboratory procedures offered by ARTs. Positioning, entrapment and selection of reproductive cells can be achieved with DEP and ER, while EWOD provides the dynamic microenvironment of a developing embryo to better mimic the functions of the oviduct. Furthermore, these techniques are applicable for the assessment of the developmental competence of a mammalian embryo in vitro. Such research paves the way towards the amelioration and full automation of the assisted reproduction methods. This article aims to provide a summary on the recent developments regarding electrically stimulated lab-on-chip devices and their application for the manipulation of gametes and embryos in vitro.
Collapse
Affiliation(s)
- Adriana Karcz
- Centre for Microsystems Technology (CMST), Imec and Ghent University, Technologiepark Zwijnaarde 126, 9052 Zwijnaarde, Ghent, Belgium.
- Reproductive Biology Unit (RBU), Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Salisburylaan 133 D4 entrance 4, 9820 Merelbeke, Belgium
| | - Ann Van Soom
- Reproductive Biology Unit (RBU), Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Salisburylaan 133 D4 entrance 4, 9820 Merelbeke, Belgium
| | - Katrien Smits
- Reproductive Biology Unit (RBU), Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Salisburylaan 133 D4 entrance 4, 9820 Merelbeke, Belgium
| | - Rik Verplancke
- Centre for Microsystems Technology (CMST), Imec and Ghent University, Technologiepark Zwijnaarde 126, 9052 Zwijnaarde, Ghent, Belgium.
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Campus Sterre, building S4, Krijgslaan 281, 9000 Ghent, Belgium
| | - Jan Vanfleteren
- Centre for Microsystems Technology (CMST), Imec and Ghent University, Technologiepark Zwijnaarde 126, 9052 Zwijnaarde, Ghent, Belgium.
| |
Collapse
|
7
|
Alias AB, Huang HY, Yao DJ. A Review on Microfluidics: An Aid to Assisted Reproductive Technology. Molecules 2021; 26:4354. [PMID: 34299629 PMCID: PMC8303723 DOI: 10.3390/molecules26144354] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Infertility is a state of the male or female reproductive system that is defined as the failure to achieve pregnancy even after 12 or more months of regular unprotected sexual intercourse. Assisted reproductive technology (ART) plays a crucial role in addressing infertility. Various ART are now available for infertile couples. Fertilization in vitro (IVF), intracytoplasmic sperm injection (ICSI) and intrauterine insemination (IUI) are the most common techniques in this regard. Various microfluidic technologies can incorporate various ART procedures such as embryo and gamete (sperm and oocyte) analysis, sorting, manipulation, culture and monitoring. Hence, this review intends to summarize the current knowledge about the application of this approach towards cell biology to enhance ART.
Collapse
Affiliation(s)
- Anand Baby Alias
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung University and College of Medicine, Taoyuan 33305, Taiwan
| | - Da-Jeng Yao
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
8
|
Le Gac S, Ferraz M, Venzac B, Comizzoli P. Understanding and Assisting Reproduction in Wildlife Species Using Microfluidics. Trends Biotechnol 2020; 39:584-597. [PMID: 33039163 DOI: 10.1016/j.tibtech.2020.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022]
Abstract
Conservation breeding and assisted reproductive technologies (ARTs) are invaluable tools to save wild animal species that are on the brink of extinction. Microfluidic devices recently developed for human or domestic animal reproductive medicine could significantly help to increase knowledge about fertility and contribute to the success of ART in wildlife. Some of these microfluidic tools could be applied to wild species, but dedicated efforts will be necessary to meet specific needs in animal conservation; for example, they need to be cost-effective, applicable to multiple species, and field-friendly. Microfluidics represents only one powerful technology in a complex toolbox and must be integrated with other approaches to be impactful in managing wildlife reproduction.
Collapse
Affiliation(s)
- Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, Faculty of Electrical Engineering, Mathematics and Computer Sciences, MESA+ Institute for Nanotechnology, and TechMed Center, University of Twente, Enschede, The Netherlands.
| | - Marcia Ferraz
- Department of Veterinary Sciences, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Bastien Venzac
- Applied Microfluidics for BioEngineering Research, Faculty of Electrical Engineering, Mathematics and Computer Sciences, MESA+ Institute for Nanotechnology, and TechMed Center, University of Twente, Enschede, The Netherlands
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA.
| |
Collapse
|
9
|
Using a Dielectrophoretic Microfluidic Biochip Enhanced Fertilization of Mouse Embryo in Vitro. MICROMACHINES 2020; 11:mi11080714. [PMID: 32717960 PMCID: PMC7464277 DOI: 10.3390/mi11080714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022]
Abstract
Droplet microfluidics has appealed to many interests for its capability to epitomize cells in a microscale environment and it is also a forceful technique for high-throughput single-cell epitomization. A dielectrophoretic microfluidic system imitates the oviduct of mammals with a microchannel to achieve fertilization in vitro (IVF) of an imprinting control-region (ICR) mouse. We applied a microfluidic chip and a positive dielectrophoretic (p-DEP) force to capture and to screen the sperm for the purpose of manipulating the oocyte. The p-DEP responses of the oocyte and sperm were exhibited under applied bias conditions (waveform AC 10 Vpp, 1 MHz) for trapping 1 min. The insemination concentration of sperm nearby the oocyte was increased to enhance the probability of natural fertilization through the p-DEP force trapping. A simulation tool (CFDRC-ACE+) was used to simulate and to analyze the distribution of the electric field. The DEP microfluidic devices were fabricated using poly (dimethylsiloxane) (PDMS) and ITO (indium tin oxide)-glass with electrodes. We discuss the requirement of sperm in a DEP microfluidic chip at varied concentrations to enhance the future rate of fertilization in vitro for an oligozoospermia patient. The result indicates that the rate of fertility in our device is 17.2 ± 7.5% (n = 30) at about 3000 sperms, compatible with traditional droplet-based IVF, which is 14.2 ± 7.5% (n = 28).
Collapse
|
10
|
Unveiling the Potential of Droplet Generation, Sorting, Expansion, and Restoration in Microfluidic Biochips. MICROMACHINES 2019; 10:mi10110756. [PMID: 31698735 PMCID: PMC6915428 DOI: 10.3390/mi10110756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/26/2019] [Accepted: 11/03/2019] [Indexed: 12/05/2022]
Abstract
Microfluidic biochip techniques are prominently replacing conventional biochemical analyzers by the integration of all functions necessary for biochemical analysis using microfluidics. The microfluidics of droplets offer exquisite control over the size of microliter samples to satisfy the requirements of embryo culture, which might involve a size ranging from picoliter to nanoliter. Polydimethylsiloxane (PDMS) is the mainstream material for the fabrication of microfluidic devices due to its excellent biocompatibility and simplicity of fabrication. Herein, we developed a microfluidic biomedical chip on a PDMS substrate that integrated four key functions—generation of a droplet of an emulsion, sorting, expansion and restoration, which were employed in a mouse embryo system to assess reproductive medicine. The main channel of the designed chip had width of 1200 μm and height of 500 μm. The designed microfluidic chips possessed six sections—cleaved into three inlets and three outlets—to study the key functions with five-day embryo culture. The control part of the experiment was conducted with polystyrene (PS) beads (100 μm), the same size as the murine embryos, for the purpose of testing. The outcomes of our work illustrate that the rate of success of the static droplet culture group (87.5%) is only slightly less than that of a conventional group (95%). It clearly demonstrates that a droplet-based microfluidic system can produce a droplet in a volume range from picoliter to nanoliter.
Collapse
|
11
|
|
12
|
Tajik P, Saidi MS, Kashaninejad N, Nguyen NT. Simple, Cost-Effective, and Continuous 3D Dielectrophoretic Microchip for Concentration and Separation of Bioparticles. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00771] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Parham Tajik
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9567, Iran
| | - Mohammad Said Saidi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9567, Iran
| | - Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, Queensland 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, Queensland 4111, Australia
| |
Collapse
|
13
|
Shuchat S, Park S, Kol S, Yossifon G. Distinct and independent dielectrophoretic behavior of the head and tail of sperm and its potential for the safe sorting and isolation of rare spermatozoa. Electrophoresis 2019; 40:1606-1614. [PMID: 30892707 DOI: 10.1002/elps.201800437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/15/2019] [Accepted: 03/07/2019] [Indexed: 12/18/2022]
Abstract
Often, in semen samples with minute amounts of sperm, even the single spermatozoon required to fertilize an oocyte cannot be found in the ejaculate. This is primarily because currently, sperm is generally searched for manually under a microscope. In this study, dielectrophoresis (DEP) was investigated as an alternative automated technique for sorting sperm cells. Using a quadrupolar electrode array it was shown that the head and tail of the sperm had independent and unique crossover frequencies corresponding to the transition of the DEP force from repulsive (negative) to attractive (positive). These surprising results were further analyzed, showing that the head and tail have their own distinct electrical properties. This significant result allows for the sperm's head, which contains the DNA, to be distanced from potentially damaging high electric fields using negative DEP while simultaneously manipulating and sorting the sperm using the positive DEP response of the tail. A proof of concept sorting chip was designed and tested. The low crossover frequency of the tail also allows for the use of a higher conductivity, and thus more physiological, medium than the conventional DEP solutions. Although more research is required to design and optimize an efficient, user-friendly, and high-throughput device, this research is a proof of concept that DEP has the potential to automate and improve the processing of semen samples, especially those containing only rare spermatozoa.
Collapse
Affiliation(s)
- Sholom Shuchat
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City, Israel
| | - Sinwook Park
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City, Israel
| | - Shahar Kol
- IVF Unit, Rambam Health Care Campus, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City, Israel
| |
Collapse
|