1
|
Genome-wide siRNA screening reveals several host receptors for the binding of human gut commensal Bifidobacterium bifidum. NPJ Biofilms Microbiomes 2022; 8:50. [PMID: 35768415 PMCID: PMC9243078 DOI: 10.1038/s41522-022-00312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Bifidobacterium spp. are abundant gut commensals, especially in breast-fed infants. Bifidobacteria are associated with many health-promoting effects including maintenance of epithelial barrier and integrity as well as immunomodulation. However, the protective mechanisms of bifidobacteria on intestinal epithelium at molecular level are poorly understood. In this study, we developed a high-throughput in vitro screening assay to explore binding receptors of intestinal epithelial cells for Bifidobacterium bifidum. Short interfering RNAs (siRNA) were used to silence expression of each gene in the Caco-2 cell line one by one. The screen yielded four cell surface proteins, SERPINB3, LGICZ1, PKD1 and PAQR6, which were identified as potential receptors as the siRNA knock-down of their expression decreased adhesion of B. bifidum to the cell line repeatedly during the three rounds of siRNA screening. Furthermore, blocking of these host cell proteins by specific antibodies decreased the binding of B. bifidum significantly to Caco-2 and HT29 cell lines. All these molecules are located on the surface of epithelial cells and three out of four, SERPINB3, PKD1 and PAQR6, are involved in the regulation of cellular processes related to proliferation, differentiation and apoptosis as well as inflammation and immunity. Our results provide leads to the first steps in the mechanistic cascade of B. bifidum-host interactions leading to regulatory effects in the epithelium and may partly explain how this commensal bacterium is able to promote intestinal homeostasis.
Collapse
|
2
|
Veselinyová D, Mašlanková J, Kalinová K, Mičková H, Mareková M, Rabajdová M. Selected In Situ Hybridization Methods: Principles and Application. Molecules 2021; 26:molecules26133874. [PMID: 34202914 PMCID: PMC8270300 DOI: 10.3390/molecules26133874] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
We are experiencing rapid progress in all types of imaging techniques used in the detection of various numbers and types of mutation. In situ hybridization (ISH) is the primary technique for the discovery of mutation agents, which are presented in a variety of cells. The ability of DNA to complementary bind is one of the main principles in every method used in ISH. From the first use of in situ techniques, scientists paid attention to the improvement of the probe design and detection, to enhance the fluorescent signal intensity and inhibition of cross-hybrid presence. This article discusses the individual types and modifications, and is focused on explaining the principles and limitations of ISH division on different types of probes. The article describes a design of probes for individual types of in situ hybridization (ISH), as well as the gradual combination of several laboratory procedures to achieve the highest possible sensitivity and to prevent undesirable events accompanying hybridization. The article also informs about applications of the methodology, in practice and in research, to detect cell to cell communication and principles of gene silencing, process of oncogenesis, and many other unknown processes taking place in organisms at the DNA/RNA level.
Collapse
Affiliation(s)
- Dominika Veselinyová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.V.); (K.K.); (M.M.); (M.R.)
| | - Jana Mašlanková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.V.); (K.K.); (M.M.); (M.R.)
- Correspondence:
| | - Katarina Kalinová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.V.); (K.K.); (M.M.); (M.R.)
| | - Helena Mičková
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia;
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.V.); (K.K.); (M.M.); (M.R.)
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.V.); (K.K.); (M.M.); (M.R.)
| |
Collapse
|
3
|
Hassan S, Esch A, Liby T, Gray JW, Heiser LM. Pathway-Enriched Gene Signature Associated with 53BP1 Response to PARP Inhibition in Triple-Negative Breast Cancer. Mol Cancer Ther 2017; 16:2892-2901. [PMID: 28958991 DOI: 10.1158/1535-7163.mct-17-0170] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/29/2017] [Accepted: 09/18/2017] [Indexed: 12/30/2022]
Abstract
Effective treatment of patients with triple-negative (ER-negative, PR-negative, HER2-negative) breast cancer remains a challenge. Although PARP inhibitors are being evaluated in clinical trials, biomarkers are needed to identify patients who will most benefit from anti-PARP therapy. We determined the responses of three PARP inhibitors (veliparib, olaparib, and talazoparib) in a panel of eight triple-negative breast cancer cell lines. Therapeutic responses and cellular phenotypes were elucidated using high-content imaging and quantitative immunofluorescence to assess markers of DNA damage (53BP1) and apoptosis (cleaved PARP). We determined the pharmacodynamic changes as percentage of cells positive for 53BP1, mean number of 53BP1 foci per cell, and percentage of cells positive for cleaved PARP. Inspired by traditional dose-response measures of cell viability, an EC50 value was calculated for each cellular phenotype and each PARP inhibitor. The EC50 values for both 53BP1 metrics strongly correlated with IC50 values for each PARP inhibitor. Pathway enrichment analysis identified a set of DNA repair and cell cycle-associated genes that were associated with 53BP1 response following PARP inhibition. The overall accuracy of our 63 gene set in predicting response to olaparib in seven breast cancer patient-derived xenograft tumors was 86%. In triple-negative breast cancer patients who had not received anti-PARP therapy, the predicted response rate of our gene signature was 45%. These results indicate that 53BP1 is a biomarker of response to anti-PARP therapy in the laboratory, and our DNA damage response gene signature may be used to identify patients who are most likely to respond to PARP inhibition. Mol Cancer Ther; 16(12); 2892-901. ©2017 AACR.
Collapse
Affiliation(s)
- Saima Hassan
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, Oregon. .,Division of Surgical Oncology, Department of Surgery, Centre Hospitalier de l'Université de Montréal (CHUM), Centre de Recherche du CHUM, l'Université de Montréal, Québec, Canada
| | - Amanda Esch
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, Oregon
| | - Tiera Liby
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, Oregon
| | - Joe W Gray
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, Oregon
| | - Laura M Heiser
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
4
|
Screening of Small Molecule Microarrays for Ligands Targeted to the Extracellular Epitopes of Living Cells. MICROARRAYS 2016; 4:53-63. [PMID: 26435848 PMCID: PMC4589137 DOI: 10.3390/microarrays4010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The screening of living cells using high-throughput microarrays is technically challenging. Great care must be taken in the chemical presentation of potential ligands and the number of collisions that cells make with them. To overcome these issues, we have developed a glass slide-based microarray system to discover small molecule ligands that preferentially bind to one cell type over another, including when the cells differ by only a single receptor. Chemical spots of 300 ± 10 μm in diameter are conjugated covalently to glass slides using an arraying robot, and novel near-infrared fluorophores with peak emission at 700 nm and 800 nm are used to label two different cell types. By carefully optimizing incubation conditions, including cell density, motion, kinetics, detection, etc. we demonstrate that cell-ligand binding occurs, and that the number of cells bound per chemical spot correlates with ligand affinity and specificity. This screening system lays the foundation for high-throughput discovery of novel ligands to the cell surface.
Collapse
|
5
|
Carvajal-Hausdorf D, Schalper KA, Neumeister V, Rimm DL. Quantitative measurement of cancer tissue biomarkers in the lab and in the clinic. J Transl Med 2015; 95:385-96. [PMID: 25502176 PMCID: PMC4383674 DOI: 10.1038/labinvest.2014.157] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/18/2014] [Indexed: 02/06/2023] Open
Abstract
Detection of biomolecules in tissues provides contextual information and the possibility to assess the interaction of different cell types and markers. Routine qualitative assessment of immune- and oligonucleotide-based methods in research and the clinic has been associated with assay variability because of lack of stringent validation and subjective interpretation of results. As a result, the vast majority of in situ assays in clinical usage are nonquantitative and, although useful, often of questionable scientific validity. Here, we revisit the reporters and methods used for single- and multiplexed in situ visualization of protein and RNA. Then we examine methods for the use of quantitative platforms for in situ measurement of protein and mRNA levels. Finally, we discuss the challenges of the transition of these methods to the clinic and their potential role as tools for development of companion diagnostic tests.
Collapse
Affiliation(s)
| | - Kurt A. Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | | | - David L. Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
6
|
Costello JC, Heiser LM, Georgii E, Gönen M, Menden MP, Wang NJ, Bansal M, Ammad-ud-din M, Hintsanen P, Khan SA, Mpindi JP, Kallioniemi O, Honkela A, Aittokallio T, Wennerberg K, Collins JJ, Gallahan D, Singer D, Saez-Rodriguez J, Kaski S, Gray JW, Stolovitzky G. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol 2014; 32:1202-12. [PMID: 24880487 DOI: 10.1038/nbt.2877] [Citation(s) in RCA: 499] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 03/12/2014] [Indexed: 12/20/2022]
Abstract
Predicting the best treatment strategy from genomic information is a core goal of precision medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic and proteomic profiling data sets measured in human breast cancer cell lines. Through a collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug sensitivity prediction algorithms. The top-performing approaches modeled nonlinear relationships and incorporated biological pathway information. We found that gene expression microarrays consistently provided the best predictive power of the individual profiling data sets; however, performance was increased by including multiple, independent data sets. We discuss the innovations underlying the top-performing methodology, Bayesian multitask MKL, and we provide detailed descriptions of all methods. This study establishes benchmarks for drug sensitivity prediction and identifies approaches that can be leveraged for the development of new methods.
Collapse
Affiliation(s)
- James C Costello
- 1] Howard Hughes Medical Institute, Boston University, Boston, Massachusetts, USA. [2] Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA. [3] [4]
| | - Laura M Heiser
- 1] Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA. [2]
| | - Elisabeth Georgii
- 1] Helsinki Institute for Information Technology HIIT, Department of Information and Computer Science, Aalto University, Espoo, Finland. [2]
| | - Mehmet Gönen
- Helsinki Institute for Information Technology HIIT, Department of Information and Computer Science, Aalto University, Espoo, Finland
| | - Michael P Menden
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Nicholas J Wang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Mukesh Bansal
- Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, New York, New York, USA
| | - Muhammad Ammad-ud-din
- Helsinki Institute for Information Technology HIIT, Department of Information and Computer Science, Aalto University, Espoo, Finland
| | - Petteri Hintsanen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Suleiman A Khan
- Helsinki Institute for Information Technology HIIT, Department of Information and Computer Science, Aalto University, Espoo, Finland
| | - John-Patrick Mpindi
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Antti Honkela
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | | | - James J Collins
- 1] Howard Hughes Medical Institute, Boston University, Boston, Massachusetts, USA. [2] Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA. [3] Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Dan Gallahan
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dinah Singer
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Samuel Kaski
- 1] Helsinki Institute for Information Technology HIIT, Department of Information and Computer Science, Aalto University, Espoo, Finland. [2] Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Joe W Gray
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | | |
Collapse
|
7
|
Dao KHT, Rotelli MD, Brown BR, Yates JE, Rantala J, Tognon C, Tyner JW, Druker BJ, Bagby GC. The PI3K/Akt1 pathway enhances steady-state levels of FANCL. Mol Biol Cell 2013; 24:2582-92. [PMID: 23783032 PMCID: PMC3744951 DOI: 10.1091/mbc.e13-03-0144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fanconi anemia hematopoietic stem cells display poor self-renewal capacity when subjected to a variety of cellular stress. This phenotype raises the question of whether the Fanconi anemia proteins are stabilized or recruited as part of a stress response and protect against stem cell loss. Here we provide evidence that FANCL, the E3 ubiquitin ligase of the Fanconi anemia pathway, is constitutively targeted for degradation by the proteasome. We confirm biochemically that FANCL is polyubiquitinated with Lys-48-linked chains. Evaluation of a series of N-terminal-deletion mutants showed that FANCL's E2-like fold may direct ubiquitination. In addition, our studies showed that FANCL is stabilized in a complex with axin1 when glycogen synthase kinase-3β is overexpressed. This result leads us to investigate the potential regulation of FANCL by upstream signaling pathways known to regulate glycogen synthase kinase-3β. We report that constitutively active, myristoylated-Akt increases FANCL protein level by reducing polyubiquitination of FANCL. Two-dimensional PAGE analysis shows that acidic forms of FANCL, some of which are phospho-FANCL, are not subject to polyubiquitination. These results indicate that a signal transduction pathway involved in self-renewal and survival of hematopoietic stem cells also functions to stabilize FANCL and suggests that FANCL participates directly in support of stem cell function.
Collapse
Affiliation(s)
- Kim-Hien T Dao
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|