1
|
Andraos C, Yu IJ, Gulumian M. Interference: A Much-Neglected Aspect in High-Throughput Screening of Nanoparticles. Int J Toxicol 2020; 39:397-421. [PMID: 32672081 DOI: 10.1177/1091581820938335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Despite several studies addressing nanoparticle (NP) interference with conventional toxicity assay systems, it appears that researchers still rely heavily on these assays, particularly for high-throughput screening (HTS) applications in order to generate "big" data for predictive toxicity approaches. Moreover, researchers often overlook investigating the different types of interference mechanisms as the type is evidently dependent on the type of assay system implemented. The approaches implemented in the literature appear to be not adequate as it often addresses only one type of interference mechanism with the exclusion of others. For example, interference of NPs that have entered cells would require intracellular assessment of their interference with fluorescent dyes, which has so far been neglected. The present study investigated the mechanisms of interference of gold NPs and silver NPs in assay systems implemented in HTS including optical interference as well as adsorption or catalysis. The conventional assays selected cover all optical read-out systems, that is, absorbance (XTT toxicity assay), fluorescence (CytoTox-ONE Homogeneous membrane integrity assay), and luminescence (CellTiter Glo luminescent assay). Furthermore, this study demonstrated NP quenching of fluorescent dyes also used in HTS (2',7'-dichlorofluorescein, propidium iodide, and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzamidazolocarbocyanin iodide). To conclude, NP interference is, as such, not a novel concept, however, ignoring this aspect in HTS may jeopardize attempts in predictive toxicology. It should be mandatory to report the assessment of all mechanisms of interference within HTS, as well as to confirm results with label-free methodologies to ensure reliable big data generation for predictive toxicology.
Collapse
Affiliation(s)
- Charlene Andraos
- Toxicology Department, 71899National Institute for Occupational Health, Johannesburg, South Africa
| | - Il Je Yu
- HCTm CO, LTD, Majang-myeon, Icheon, South Korea
| | - Mary Gulumian
- Toxicology Department, 71899National Institute for Occupational Health, Johannesburg, South Africa.,Haematology and Molecular Medicine Department, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Fink A, Brückner DB, Schreiber C, Röttgermann PJF, Broedersz CP, Rädler JO. Area and Geometry Dependence of Cell Migration in Asymmetric Two-State Micropatterns. Biophys J 2020; 118:552-564. [PMID: 31864660 PMCID: PMC7002917 DOI: 10.1016/j.bpj.2019.11.3389] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/11/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Microstructured surfaces provide a unique framework to probe cell migration and cytoskeletal dynamics in a standardized manner. Here, we report on the steady-state occupancy probability of cells in asymmetric two-state microstructures that consist of two fibronectin-coated adhesion sites connected by a thin guidance cue. In these dumbbell-like structures, cells transition between the two sites in a repeated and stochastic manner, and average dwell times in the respective microenvironments are determined from the cell trajectories. We study the dynamics of human breast carcinoma cells (MDA-MB-231) in these microstructures as a function of area, shape, and orientation of the adhesion sites. On square adhesive sites with different areas, we find that the occupancy probability ratio is directly proportional to the ratio of corresponding adhesion site areas. These asymmetries are well captured by a simple model for the stochastic nonlinear dynamics of the cells, which reveals generic features of the motion. Sites of equal area but different shape lead to equal occupancy if shapes are isotropic (e.g., squared or circular). In contrast, an asymmetry in the occupancy is induced by anisotropic shapes like rhombi, triangles, or rectangles that enable motion in the direction perpendicular to the transition axis. Analysis of the two-dimensional motion of cells between two rectangles with orthogonal orientation suggests that cellular transition rates depend on the cell polarization induced by anisotropic micropatterns. Taken together, our results illustrate how two-state micropatterns provide a dynamic migration assay with distinct dwell times and relative cell occupancy as readouts, which may be useful to probe cell-microenvironment interactions.
Collapse
Affiliation(s)
- Alexandra Fink
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Germany
| | - David B Brückner
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Germany; Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Germany
| | - Christoph Schreiber
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Germany
| | - Peter J F Röttgermann
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Germany
| | - Chase P Broedersz
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Germany; Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Germany
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Germany.
| |
Collapse
|
3
|
Reiser A, Woschée D, Mehrotra N, Krzysztoń R, Strey HH, Rädler JO. Correlation of mRNA delivery timing and protein expression in lipid-based transfection. Integr Biol (Camb) 2019; 11:362-371. [DOI: 10.1093/intbio/zyz030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/02/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Abstract
Non-viral gene delivery is constrained by the dwell time that most synthetic nucleic acid nanocarriers spend inside endosomal compartments. In order to overcome this endosomal-release bottleneck, methods are required that measure nanocarrier uptake kinetics and transfection efficiency simultaneously. Here, we employ live-cell imaging on single-cell arrays (LISCA) to study the delivery-time distribution of lipid-based mRNA complexes under varied serum conditions. By fitting a translation-maturation model to hundreds of individual eGFP reporter fluorescence time courses, the protein expression onset times and the expression rates after transfection are determined. Using this approach, we find that delivery timing and protein expression rates are not intrinsically correlated at the single-cell level, even though population-averaged values of both parameters conjointly change as a function of increasing external serum protein fraction. Lipofectamine-mediated delivery showed decreased transfection efficiency and longer delivery times with increasing serum protein concentration. This is in contrast to ionizable lipid nanoparticle (i-LNP)-mediated transfer, which showed increased efficiency and faster uptake in the presence of serum. In conclusion, the interdependences of single-cell expression rates and onset timing provide additional clues on uptake and release mechanisms, which are useful for improving nucleic acid delivery.
Collapse
Affiliation(s)
- A Reiser
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
- Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-University, Fedor-Lynen-Straße 25, 81377 Munich, Germany
| | - D Woschée
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - N Mehrotra
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - R Krzysztoń
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
- Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-University, Fedor-Lynen-Straße 25, 81377 Munich, Germany
- Department of Biomedical Engineering and Laufer Center for Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - H H Strey
- Department of Biomedical Engineering and Laufer Center for Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - J O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
- Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-University, Fedor-Lynen-Straße 25, 81377 Munich, Germany
| |
Collapse
|
4
|
Joossens E, Macko P, Palosaari T, Gerloff K, Ojea-Jiménez I, Gilliland D, Novak J, Fortaner Torrent S, Gineste JM, Römer I, Briffa SM, Valsami-Jones E, Lynch I, Whelan M. A high throughput imaging database of toxicological effects of nanomaterials tested on HepaRG cells. Sci Data 2019; 6:46. [PMID: 31048742 PMCID: PMC6497662 DOI: 10.1038/s41597-019-0053-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/27/2019] [Indexed: 01/22/2023] Open
Abstract
The large amount of existing nanomaterials demands rapid and reliable methods for testing their potential toxicological effect on human health, preferably by means of relevant in vitro techniques in order to reduce testing on animals. Combining high throughput workflows with automated high content imaging techniques allows deriving much more information from cell-based assays than the typical readouts (i.e. one measurement per well) with optical plate-readers. We present here a dataset including data based on a maximum of 14 different read outs (including viable cell count, cell membrane permeability, apoptotic cell death, mitochondrial membrane potential and steatosis) of the human hepatoma HepaRG cell line treated with a large set of nanomaterials, coatings and supernatants at different concentrations. The database, given its size, can be utilized in the development of in silico hazard assessment and prediction tools or can be combined with toxicity results from other in vitro test systems.
Collapse
Affiliation(s)
| | - Peter Macko
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Taina Palosaari
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Kirsten Gerloff
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Jaroslav Novak
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Isabella Römer
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Human & Environmental Health & Safety Group, Materials Safety Unit, LEITAT, C/Palllars 179-185, 08005, Barcelona, Spain
| | - Sophie Marie Briffa
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
5
|
Murschhauser A, Röttgermann PJF, Woschée D, Ober MF, Yan Y, Dawson KA, Rädler JO. A high-throughput microscopy method for single-cell analysis of event-time correlations in nanoparticle-induced cell death. Commun Biol 2019; 2:35. [PMID: 30701200 PMCID: PMC6345847 DOI: 10.1038/s42003-019-0282-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
The temporal context of cell death decisions remains generally hidden in ensemble measurements with endpoint readouts. Here, we describe a method to extract event times from fluorescence time traces of cell death-related markers in automated live-cell imaging on single-cell arrays (LISCA) using epithelial A549 lung and Huh7 liver cancer cells as a model system. In pairwise marker combinations, we assess the chronological sequence and delay times of the events lysosomal membrane permeabilization, mitochondrial outer membrane permeabilization and oxidative burst after exposure to 58 nm amino-functionalized polystyrene nanoparticles (PS-NH2 nanoparticles). From two-dimensional event-time scatter plots we infer a lysosomal signal pathway at a low dose of nanoparticles (25 µg mL-1) for both cell lines, while at a higher dose (100 µg mL-1) a mitochondrial pathway coexists in A549 cells, but not in Huh7. In general, event-time correlations provide detailed insights into heterogeneity and interdependencies in signal transmission pathways.
Collapse
Affiliation(s)
- Alexandra Murschhauser
- Faculty of Physics and Center for NanoSciene (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, 80539 Germany
| | - Peter J. F. Röttgermann
- Faculty of Physics and Center for NanoSciene (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, 80539 Germany
| | - Daniel Woschée
- Faculty of Physics and Center for NanoSciene (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, 80539 Germany
| | - Martina F. Ober
- Faculty of Physics and Center for NanoSciene (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, 80539 Germany
| | - Yan Yan
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth A. Dawson
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joachim O. Rädler
- Faculty of Physics and Center for NanoSciene (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, 80539 Germany
| |
Collapse
|
6
|
Single Cell Microarrays Fabricated by Microscale Plasma-Initiated Protein Patterning (μPIPP). Methods Mol Biol 2018; 1771:41-54. [PMID: 29633203 DOI: 10.1007/978-1-4939-7792-5_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Micropatterned arrays considerably advanced single cell fluorescence time-lapse measurements by providing standardized boundary conditions for thousands of cells in parallel. In these assays, cells are forced to adhere to defined microstructured protein islands separated by passivated, nonadhesive areas. Here we provide a detailed protocol on how to reproducibly fabricate high quality single cell arrays by microscale plasma-initiated protein patterning (μPIPP). Advantages of μPIPP arrays are the ease of preparation and the unrestricted choice of substrates as well as proteins. We demonstrate how the arrays enable the efficient measurement of single cell time trajectories using automated data acquisition and data analysis by example of single cell gene expression after mRNA transfection and time courses of single cell apoptosis. We discuss the more general use of the protocol for assessment of single cell dynamics with the help of fluorescent reporters.
Collapse
|
7
|
Qiu TA, Clement PL, Haynes CL. Linking nanomaterial properties to biological outcomes: analytical chemistry challenges in nanotoxicology for the next decade. Chem Commun (Camb) 2018; 54:12787-12803. [DOI: 10.1039/c8cc06473c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article provides our perspective on the analytical challenges in nanotoxicology as the field is entering its third decade.
Collapse
Affiliation(s)
- Tian A. Qiu
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| | | | | |
Collapse
|