1
|
Liu C, Duan W, Ma X, Lin G, Li B, Deng H. Synthesis, Antifungal Activity, and Action Mechanism of Anethole-Derived Amide-Urea Compounds. Chem Biodivers 2024:e202402938. [PMID: 39715064 DOI: 10.1002/cbdv.202402938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
In order to develop new antifungal molecules and explore further applications of natural products, 25 novel amide-urea compounds were synthesized from anethole in this work by a few simple reactions, and structural confirmation was conducted using 1H-nuclear magnetic resonance (1H-NMR), 13C-NMR, high-resolution mass spectrometry, and Fourier transform infrared spectroscopy. Preliminary bioactivity tests were performed against eight plant pathogens. The results demonstrated that all compounds exhibited antifungal activity against the tested fungi, and 5p exhibited the most potent antifungal activity. To explore the action mechanism of the antifungal compounds, the inhibitory activity of 5p against succinate dehydrogenase (SDH) was evaluated and found to be comparable to that of boscalid. Furthermore, the binding mode of the compound to SDH was simulated by molecular docking, and similarities between 5p and boscalid's binding with SDH were identified. The results indicate that further investigation of compound 5p may prove beneficial in determining its potential as a fungicide.
Collapse
Affiliation(s)
- Chuwen Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| | - Xianli Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, P. R. China
| | - Guishan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| | - Baoyu Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| | - Huan Deng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| |
Collapse
|
2
|
Liu X, Sun Y, Liu C, Liu B, Li T, Chen X, Chen Y. Various amino acid substitutions in succinate dehydrogenase complex regulating differential resistance to pydiflumetofen in Magnaporthe oryzae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105990. [PMID: 39084767 DOI: 10.1016/j.pestbp.2024.105990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 08/02/2024]
Abstract
Rice blast, caused by Magnaporthe oryzae, is a devastating fungal disease worldwide. Pydiflumetofen (Pyd) is a new succinate dehydrogenase inhibitor (SDHI) that exhibited anti-fungal activity against M. oryzae. However, control of rice blast by Pyd and risk of resistance to Pyd are not well studied in this pathogen. The baseline sensitivity of 109 M. oryzae strains to Pyd was determined using mycelial growth rate assay, with EC50 values ranging from 0.291 to 2.1313 μg/mL, and an average EC50 value of 1.1005 ± 0.3727 μg/mL. Totally 28 Pyd-resistant (PydR) mutants with 15 genotypes of point mutations in succinate dehydrogenase (SDH) complex were obtained, and the resistance level could be divided into three categories of very high resistance (VHR), high resistance (HR) and moderate resistance (MR) with the resistance factors (RFs) of >1000, 105.74-986.13 and 81.92-99.48, respectively. Molecular docking revealed that all 15 mutations decreased the binding-force score for the affinity between Pyd and target subunits, which further confirmed that these 15 genotypes of point mutations were responsible for the resistance to Pyd in M. oryzae. There was positive cross resistance between Pyd and other SDHIs, such as fluxapyroxad, penflufen or carboxin, while there was no cross-resistance between Pyd and carbendazim, prochloraz or azoxystrobin in M. oryzae, however, PydR mutants with SdhBP198Q, SdhCL66F or SdhCL66R genotype were still sensitive to the other 3 SDHIs, indicating lack of cross resistance. The results of fitness study revealed that the point mutations in MoSdhB/C/D genes might reduce the hyphae growth and sporulation, but could improve the pathogenicity in M. oryzae. Taken together, the risk of resistance to Pyd might be moderate to high, and it should be used as tank-mixtures with other classes of fungicides to delay resistance development when it is used for the control of rice blast in the field.
Collapse
Affiliation(s)
- Xinyan Liu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China
| | - Yang Sun
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China
| | - Chuchu Liu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China
| | - Bing Liu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China
| | - Tiantian Li
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China
| | - Xing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China
| | - Yu Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Zhou R, Sun B, Zhu G, Xie X, Chai A, Li L, Fan T, Li B, Shi Y. Monitoring Corynespora cassiicola Resistance to Boscalid, Trifloxystrobin, and Carbendazim in China. PHYTOPATHOLOGY 2024; 114:359-367. [PMID: 37665395 DOI: 10.1094/phyto-06-23-0186-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cucumber leaf spot (CLS), caused by Corynespora cassiicola, is a serious disease of greenhouse cucumbers. With frequent use of existing fungicides, C. cassiicola has developed resistance to some of them, with serious implications for the control of CLS in the field. With a lack of new fungicides, it is necessary to use existing fungicides for effective control. Therefore, this study monitored the resistance of C. cassiicola to three commonly used and effective fungicides, boscalid, trifloxystrobin, and carbendazim, from 2017 to 2021. The frequency of resistance to boscalid showed an increasing trend, and the highest frequency was 85.85% in 2020. The frequency of resistance to trifloxystrobin was greater than 85%, and resistance to carbendazim was maintained at 100%. Among these fungicides, strains with multiple resistance to boscalid, trifloxystrobin, and carbendazim were found, accounting for 32.00, 25.25, 33.33, 43.06, and 37.24%, respectively. Of the strains that were resistant to boscalid, 87% had CcSdh mutations, including seven genotypes: B-H278L/Y, B-I280V, C-N75S, C-S73P, D-D95E, and D-G109V. Also, six mutation patterns of the Ccβ-tubulin gene were detected: E198A, F167Y, E198A&M163I, E198A&F167Y, M163I&F167Y, and E198A&F200C. Detection of mutations of the CcCytb gene in resistant strains showed that 98.8% were found to have only the G143A mutation. A total of 27 mutation combinations were found and divided into 14 groups for analysis. The resistance levels differed according to genotype. The development of genotypes showed a complex trend, increasing from 4 in 2017 to 13 in 2021 and varying by region. Multiple fungicide resistance is gradually increasing. Therefore, it is necessary to understand the types of mutations and the trend of resistance to guide the use of fungicides to achieve disease control.
Collapse
Affiliation(s)
- Rongjia Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bingxue Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangxue Zhu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuewen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ali Chai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tengfei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baoju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanxia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Gao X, Li W, Wang S, Xie B, Peng Q, Zhang C, Miao J, Dai T, Liu X. Attributes of Cyazofamid-Resistant Phytophthora litchii Mutants and Its Impact on Quality of Litchi Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:219-229. [PMID: 38131297 DOI: 10.1021/acs.jafc.3c07325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In this study, we determined the sensitivity of 148 Phytophthora litchii isolates to cyazofamid, yielding a mean EC50 value of 0.0091 ± 0.0028 μg/mL. Through fungicide adaptation, resistant mutants (RMs) carrying the F220L substitution in PlCyt b were derived from wild-type isolates. Notably, these RMs exhibited a lower fitness compared with the parental isolates. Molecular docking analysis further revealed that the F220L change contributed to a decrease in the binding energy between cyazofamid and PlCyt b. The total phenol and flavonoid contents in the litchi pericarp treated with cyazofamid on day 5 were significantly higher than in other treatments. Overall, the laboratory assessment indicated a moderate risk of cyazofamid resistance in P. litchii, but the emergence of the F220L change could lead to a high level of resistance. Thus, cyazofamid represents a promising agrochemical for controlling postharvest litchi downy blight and extending the shelf life of litchi fruits.
Collapse
Affiliation(s)
- Xuheng Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Wenhao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Shuai Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Bowen Xie
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Qin Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Can Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| | - Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Tan Dai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| |
Collapse
|
5
|
Sun B, Zhou R, Zhu G, Xie X, Chai A, Li L, Fan T, Zhang S, Li B, Shi Y. The mechanisms of target and non-target resistance to QoIs in Corynespora Cassiicola. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105760. [PMID: 38225067 DOI: 10.1016/j.pestbp.2023.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024]
Abstract
Corynespora leaf spot, caused by Corynespora cassiicola, is a foliar disease in cucumber. While the application of quinone outside inhibitors (QoIs) is an effective measure for disease control, it carries the risk of resistance development. In our monitoring of trifloxystrobin resistance from 2008 to 2020, C. cassiicola isolates were categorized into three populations: sensitive isolates (S, 0.01 < EC50 < 0.83 μg/mL), moderately resistant isolates (MR, 1.18 < EC50 < 55.67 μg/mL), and highly resistant isolates (HR, EC50 > 56.98 μg/mL). The resistance frequency reached up to 90% during this period, with an increasing trend observed in the annual average EC50 values of all the isolates. Analysis of the CcCytb gene revealed that both MR and HR populations carried the G143A mutation. Additionally, we identified mitochondrial heterogeneity, with three isolates carrying both G143 and A143 in MR and HR populations. Interestingly, isolates with the G143A mutation (G143A-MR and G143A-HR) displayed differential sensitivity to QoIs. Further experiments involving gene knockout and complementation demonstrated that the major facilitator superfamily (MFS) transporter (CcMfs1) may contribute to the disparity in sensitivity to QoIs between the G143A-MR and G143A-HR populations. However, the difference in sensitivity caused by the CcMfs1 transporter is significantly lower than the differences observed between the two populations. This suggests additional mechanisms contributing to the variation in resistance levels among C. cassiicola isolates. Our study highlights the alarming level of trifloxystrobin resistance in C. cassiicola in China, emphasizing the need for strict prohibition of QoIs use. Furthermore, our findings shed light on the occurrence of both target and non-target resistance mechanisms associated with QoIs in C. cassiicola.
Collapse
Affiliation(s)
- Bingxue Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Rongjia Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Guangxue Zhu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Xuewen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Ali Chai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Lei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Tengfei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Shengping Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Baoju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China.
| | - Yanxia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China.
| |
Collapse
|
6
|
Qiu Y, Meng Y, Lian W, Jian S, Du Y, Wang M, Yang Y, Liang X, Zhang Y. Polymorphisms at amino acid positions 85 and 86 in succinate dehydrogenase subunit C of Colletotrichum siamense: Implications for fitness and intrinsic sensitivity to SDHI fungicides. Fungal Genet Biol 2023; 169:103844. [PMID: 37989450 DOI: 10.1016/j.fgb.2023.103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Among succinate dehydrogenase inhibiter (SDHI) fungicides, penthiopyrad and benzovindiflupyr particularly inhibit Colletotrichum. Studying SDH amino acid polymorphism in Colletotrichum, along with its fungicide binding sites, is key to understanding their mechanisms of action. This study explores the SDH amino acid polymorphisms in Colletotrichum siamense strains from rubber trees in China and their interaction with SDHI fungicides, specifically penthiopyrad and benzovindiflupyr. Sequencing revealed most polymorphisms were in the SDHC subunit, particularly at positions 85 and 86, which are key to penthiopyrad resistance. Among 33 isolates, 33.3 % exhibited a substitution at position 85, and 9 % at position 86. A strain with W85L and T86N substitutions in SDHC showed reduced SDH activity, ATP content, mycelial growth, and virulence, and decreased sensitivity to penthiopyrad but not benzovindiflupyr. Molecular docking with Alphafold2 modeling suggested distinct binding modes of the two fungicides to C. siamense SDH. These findings underscore the importance of SDHC polymorphisms in C. siamense's fitness and sensitivity to SDHIs, enhancing our understanding of pathogen-SDHI interactions and aiding the development of novel SDHI fungicides.
Collapse
Affiliation(s)
- Yurong Qiu
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Yaling Meng
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Wenxu Lian
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Shasha Jian
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Yannan Du
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Meng Wang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Ye Yang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Xiaoyu Liang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
| | - Yu Zhang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
| |
Collapse
|
7
|
Deng Y, Wang T, Zhao P, Du Y, Zhang L, Qi Z, Ji M. Sensitivity to 12 Fungicides and Resistance Mechanism to Trifloxystrobin, Carbendazim, and Succinate Dehydrogenase Inhibitors in Cucumber Corynespora Leaf Spot ( Corynespora cassiicola). PLANT DISEASE 2023; 107:3783-3791. [PMID: 37189041 DOI: 10.1094/pdis-04-23-0615-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Corynespora cassiicola is the causal agent of cucumber Corynespora leaf spot, which affects many economically important plant species. Chemical control of this disease is hampered by the common development of fungicide resistance. In this study, 100 isolates from Liaoning Province were collected, and their sensitivity to 12 fungicides was determined. All the isolates (100%) were resistant to trifloxystrobin and carbendazim, and 98% were resistant to fluopyram, boscalid, pydiflumetofen, isopyrazam, and fluxapyroxad. However, none were resistant to propiconazole, prochloraz, tebuconazole, difenoconazole, and fludioxonil. The Cytb gene of trifloxystrobin-resistant isolates encoded the G143A mutation, whereas the β-tubulin gene of carbendazim-resistant isolates encoded the E198A and E198A and M163I mutations. Mutations in SdhB-I280V, SdhC-S73P, SdhC-H134R, SdhD-D95E, and SdhD-G109V were associated with resistance to the succinate dehydrogenase inhibitors (SDHIs). Trifloxystrobin, carbendazim, and fluopyram were barely effective on the resistant isolates, whereas fludioxonil and prochloraz were effective on the isolates that were resistant to the quinone outside inhibitors (QoIs), SDHIs, and benzimidazoles. Ultimately, this study demonstrates that fungicide resistance seriously threatens the effective control of Corynespora leaf spot.
Collapse
Affiliation(s)
- Yunyan Deng
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Tao Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Ping Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co., Ltd., Shenyang 110021, China
| | - Ying Du
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - LuLu Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiqui Qi
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingshan Ji
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
8
|
Dorigan AF, Moreira SI, da Silva Costa Guimarães S, Cruz-Magalhães V, Alves E. Target and non-target site mechanisms of fungicide resistance and their implications for the management of crop pathogens. PEST MANAGEMENT SCIENCE 2023; 79:4731-4753. [PMID: 37592727 DOI: 10.1002/ps.7726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
Fungicides are indispensable for high-quality crops, but the rapid emergence and evolution of fungicide resistance have become the most important issues in modern agriculture. Hence, the sustainability and profitability of agricultural production have been challenged due to the limited number of fungicide chemical classes. Resistance to site-specific fungicides has principally been linked to target and non-target site mechanisms. These mechanisms change the structure or expression level, affecting fungicide efficacy and resulting in different and varying resistance levels. This review provides background information about fungicide resistance mechanisms and their implications for developing anti-resistance strategies in plant pathogens. Here, our purpose was to review changes at the target and non-target sites of quinone outside inhibitor (QoI) fungicides, methyl-benzimidazole carbamate (MBC) fungicides, demethylation inhibitor (DMI) fungicides, and succinate dehydrogenase inhibitor (SDHI) fungicides and to evaluate if they may also be associated with a fitness cost on crop pathogen populations. The current knowledge suggests that understanding fungicide resistance mechanisms can facilitate resistance monitoring and assist in developing anti-resistance strategies and new fungicide molecules to help solve this issue. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | - Eduardo Alves
- Department of Plant Pathology, Federal University of Lavras, Lavras, Brazil
| |
Collapse
|
9
|
Sun B, Zhou R, Zhu G, Xie X, Chai A, Li L, Fan T, Li B, Shi Y. Transcriptome Analysis Reveals the Involvement of Mitophagy and Peroxisome in the Resistance to QoIs in Corynespora cassiicola. Microorganisms 2023; 11:2849. [PMID: 38137993 PMCID: PMC10745780 DOI: 10.3390/microorganisms11122849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Quinone outside inhibitor fungicides (QoIs) are crucial fungicides for controlling plant diseases, but resistance, mainly caused by G143A, has been widely reported with the high and widespread use of QoIs. However, two phenotypes of Corynespora casiicola (RI and RII) with the same G143A showed significantly different resistance to QoIs in our previous study, which did not match the reported mechanisms. Therefore, transcriptome analysis of RI and RII strains after trifloxystrobin treatment was used to explore the new resistance mechanism in this study. The results show that 332 differentially expressed genes (DEGs) were significantly up-regulated and 448 DEGs were significantly down-regulated. The results of GO and KEGG enrichment showed that DEGs were most enriched in ribosomes, while also having enrichment in peroxide, endocytosis, the lysosome, autophagy, and mitophagy. In particular, mitophagy and peroxisome have been reported in medicine as the main mechanisms of reactive oxygen species (ROS) scavenging, while the lysosome and endocytosis are an important organelle and physiological process, respectively, that assist mitophagy. The oxidative stress experiments showed that the oxidative stress resistance of the RII strains was significantly higher than that of the RI strains: specifically, it was more than 1.8-fold higher at a concentration of 0.12% H2O2. This indicates that there is indeed a significant difference in the scavenging capacity of ROS between the two phenotypic strains. Therefore, we suggest that QoIs' action caused a high production of ROS, and that scavenging mechanisms such as mitophagy and peroxisomes functioned in RII strains to prevent oxidative stress, whereas RI strains were less capable of resisting oxidative stress, resulting in different resistance to QoIs. In this study, it was first revealed that mitophagy and peroxisome mechanisms available for ROS scavenging are involved in the resistance of pathogens to fungicides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Baoju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.S.); (R.Z.)
| | - Yanxia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.S.); (R.Z.)
| |
Collapse
|
10
|
Mao Y, Zhang Z, Shen J, Yin X, Wang T, Zheng X, Sheng G, Cai Y, Shen Y, Chen Y, Zhou M, Duan Y. The intrinsic resistance of Fusarium solani to the Fusarium-specific fungicide phenamacril is attributed to the natural variation of both T218S and K376M in myosin5. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105595. [PMID: 37945245 DOI: 10.1016/j.pestbp.2023.105595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 11/12/2023]
Abstract
Fusarium solani is responsible for causing root rot in various crops, resulting in wilting and eventual demise. Phenamacril, a specific inhibitor of myosin5 protein, has gained recognition as an effective fungicide against a broad spectrum of Fusarium species. It has been officially registered for controlling Fusarium diseases through spray application, root irrigation, and seed dipping. In this study, phenamacril was observed to exhibit negligible inhibitory effects on F. solani causing crop root rot, despite the absence of prior exposure to phenamacril. Considering the high selectivity of phenamacril, this phenomenon was attributed to intrinsic resistance and further investigated for its underlying mechanism. Sequence alignment analysis of myosin5 proteins across different Fusarium species revealed significant differences at positions 218 and 376. Subsequent homology modeling and molecular docking results indicated that substitutions T218S, K376M, and T218S&K376M impaired the binding affinity between phenamacril and myosin5 in F. solani. Mutants carrying these substitutions were generated via site-directed mutagenesis. A phenamacril-sensitivity test showed that the EC50 values of mutants carrying T218S, K376M, and T218S&K376M were reduced by at least 6.13-fold, 9.66-fold, and 761.90-fold respectively compared to the wild-type strain. Fitness testing indicated that mutants carrying K376M or T218S&K376M had reduced sporulation compared to the wild-type strain. Additionally, mutants carrying T218S exhibited an enhanced virulence compared to the wild-type strain. However, there were no significant differences observed in mycelial growth rates between the mutants and the wild-type strain. Thus, the intrinsic differences observed at positions 218 and 376 in myosin5 between F. solani and other Fusarium species are specifically associated with phenamacril resistance. The identification of these resistance-associated positions in myosin5 of F. solani has significantly contributed to the understanding of phenamacril resistance mechanisms, thereby discouraging the use of phenamacril for controlling F. solani.
Collapse
Affiliation(s)
- Yushuai Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute, Nanjing Agricultural University, Sanya 572025, China
| | - Ziyang Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute, Nanjing Agricultural University, Sanya 572025, China
| | - Jinghan Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoru Yin
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianshi Wang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuanming Zheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guilin Sheng
- Institute for the control of Agrochemicals Jiangsu province, Nanjing 210036, China
| | - Yiqiang Cai
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingchun Shen
- Institute for the control of Agrochemicals Jiangsu province, Nanjing 210036, China
| | - Yuanyuan Chen
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute, Nanjing Agricultural University, Sanya 572025, China.
| |
Collapse
|
11
|
Sautua FJ, Carmona MA. SDHI resistance in Pyrenophora teres f teres and molecular detection of novel double mutations in sdh genes conferring high resistance. PEST MANAGEMENT SCIENCE 2023. [PMID: 37103894 DOI: 10.1002/ps.7517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/09/2023] [Accepted: 04/22/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND Net blotch (NB), caused by Pyrenophora teres f. teres (Ptt), is an important disease of barley worldwide. NB control is commonly achieved through the use of fungicide mixtures including strobilurins, triazoles and carboxamides. Succinate dehydrogenase inhibitors (SDHI) are important components of fungicide management programs of barley diseases. However, during the last growing seasons in Argentina, barley fields sprayed with mixtures containing SDHI fungicides have shown failures in NB control. Here, we report the isolation and characterization of Argentine Ptt strains resistant to SDHI fungicides. RESULTS Compared against a sensitive (wild-type) reference strain collected in 2008, all 21 Ptt isolates collected in 2021 exhibited resistance to pydiflumetofen and fluxapyroxad both in vitro and in vivo. Concordantly, all of them presented target-site mutations in any of the sdhB, sdhC and sdhD genes. Although the mutations detected have been previously reported in other parts of the world, this study documents for the first time the occurrence of double mutations in the same Ptt isolate. Specifically, the double mutation sdhC-N75S + sdhD-D145G confers high resistance to SDHI fungicides, while the double mutations sdhB-H277Y + sdhC-N75S and sdhB-H277Y + sdhC-H134R confer moderate levels of resistance in Ptt. CONCLUSIONS SDHI-resistance in Argentine Ptt populations is expected to increase. These findings emphasize the urgent need to perform a wider survey and a more frequent monitoring of SDHI sensitivity of Ptt populations and to develop and implement effective antiresistance tactics. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francisco José Sautua
- Facultad de Agronomía-Cátedra de Fitopatología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo Aníbal Carmona
- Facultad de Agronomía-Cátedra de Fitopatología, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Liang Z, Rong Z, Cong H, Qing-Ying D, Ming-Zhu S, Jie W, Xu-Liang N, Jin-Zhu C, Shang-Xing C, Da-Yong P. Design, synthesis and antifungal activity of novel pyrazole amides derivates. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|