1
|
Cui Y, Liu X, Feng S. Clinical Characteristics and Optimization of Empirical Antimicrobial Therapy for Febrile Neutropenia in Patients With Hematologic Malignancies. Infect Drug Resist 2025; 18:715-729. [PMID: 39936036 PMCID: PMC11812456 DOI: 10.2147/idr.s493670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
Purpose Since the publication of the 2011 Infectious Diseases Society of America (IDSA) guidelines for empirical treatment of febrile neutropenia (FN), there have been significant shifts in pathogen profiles and emerging challenges in treatment. These include increased prevalence of multidrug-resistant (MDR) bacteria and changes in the distribution of Gram-negative or Gram-positive bacteria (GPB). The study aims to update and optimize empirical treatment strategies for hematological malignancy (HM) patients, a population particularly vulnerable to these evolving threats. Methods A literature review was conducted on studies published between January 2010 and December 2023 regarding empirical treatment of FN in HM patients, focusing on pathogen characteristics, treatment regimens, and duration of therapy. Results Approximately one-third of HM patients with FN experience fever of unknown origin (FUO), while 40-50% have clinically documented infections (CDI), and 10-30% present with microbiologically documented infections (MDI), with a predominance of Gram-negative bacteria (GNB). Factors such as prolonged neutropenia, prior broad-spectrum antibiotic use, and previous infections with drug-resistant bacteria are associated with MDR infections. Cefepime, piperacillin/tazobactam (PTZ), and carbapenem are viable empirical treatments for high-risk HM patients, though cefepime monotherapy's advantage remains uncertain. In cases of pneumonia, shock, or suspected carbapenem-resistant infections, combination therapy, tigecycline, and newer antibiotics like ceftazidime/avibactam (CAZ/AVI) are often used. Empirical broad-spectrum antibiotics can be safely discontinued in FUO patients after 48 hours of clinical stability and apyrexia. Conclusion Proper selection of empirical antibiotics and determining optimal treatment duration are essential for reducing antibiotic resistance and improving outcomes in HM patients with FN. These findings underscore the need for updated clinical guidelines that address evolving pathogen profiles and the growing challenge of MDR infections.
Collapse
Affiliation(s)
- Yuqing Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, People’s Republic of China
- Tianjin Institutes of Health Science, Tianjin, 300020, People’s Republic of China
| | - Xin Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, People’s Republic of China
- Tianjin Institutes of Health Science, Tianjin, 300020, People’s Republic of China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, People’s Republic of China
- Tianjin Institutes of Health Science, Tianjin, 300020, People’s Republic of China
| |
Collapse
|
2
|
Hunter CJ, Marhoffer EA, Holleck JL, Ein Alshaeba S, Grimshaw AA, Chou A, Carey GB, Gunderson CG. Effect of empiric antibiotics against Pseudomonas aeruginosa on mortality in hospitalized patients: a systematic review and meta-analysis. J Antimicrob Chemother 2025; 80:322-333. [PMID: 39656468 DOI: 10.1093/jac/dkae422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/06/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Empiric antibiotics active against Pseudomonas aeruginosa are recommended by professional societies for certain infections and are commonly prescribed for hospitalized patients. The effect of this practice on mortality is uncertain. METHODS A systematic literature search was conducted using Embase, Medline, PubMed, Web of Science, Cochrane, Scopus and Google Scholar from earliest entry through 9 October 2023. We included studies of patients hospitalized with P. aeruginosa infections that compared mortality rates depending on whether patients received active empiric antibiotics. RESULTS We found 27 studies of 12 522 patients that reported adjusted OR of active empiric antibiotics on mortality. The pooled adjusted OR was 0.40 (95% CI, 0.32-0.50), favouring active empiric antibiotics. In practice, the mortality effect of empiric antibiotics against P. aeruginosa depends on the prevalence of P. aeruginosa and baseline mortality. The estimated absolute mortality benefit was 0.02% (95% CI, 0.02-0.02) for soft tissue infections, 0.12% (95% CI, 0.10-0.13) for urinary tract infections and community-acquired pneumonia, 0.3% (0.25-0.34) for sepsis without shock, 1.1% (95% CI, 0.9-1.4) for septic shock and 2.4% (95% CI, 1.9-2.8) for nosocomial pneumonia. CONCLUSIONS The mortality effect for empiric antibiotics against P. aeruginosa depends crucially on the prevalence of P. aeruginosa and baseline mortality by type of infection. For soft tissue infections, urinary tract infections and community-acquired pneumonia, the mortality benefit is low. Meaningful benefit of empiric antibiotics against P. aeruginosa is limited to patients with approximately 30% mortality and 5% prevalence of P. aeruginosa, which is largely limited to patients in intensive care settings.
Collapse
Affiliation(s)
- Cameron J Hunter
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Elizabeth A Marhoffer
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Medicine, Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jürgen L Holleck
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Medicine, Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Samer Ein Alshaeba
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Medicine, Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Alyssa A Grimshaw
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, CT, USA
| | - Andrew Chou
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Medicine, Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Medicine, Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - George B Carey
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Medicine, Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Craig G Gunderson
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Medicine, Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
3
|
Vena A, Schenone M, Corcione S, Giannella M, Pascale R, Giacobbe DR, Muccio M, Mornese Pinna S, Pari B, Giovannenze F, Geremia N, Mikulska M, Taddei E, Sangiorgi F, Bavaro DF, Scaglione V, Vassia V, Merli M, Bartoletti M, Viale P, De Rosa FG, Bassetti M. Impact of adequate empirical combination therapy on mortality in septic shock due to Pseudomonas aeruginosa bloodstream infections: a multicentre retrospective cohort study. J Antimicrob Chemother 2024; 79:2846-2853. [PMID: 39224938 DOI: 10.1093/jac/dkae296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES To determine the association of adequate empirical combination therapy (AECT) with 30-day all-cause mortality in patients with septic shock due to Pseudomonas aeruginosa bloodstream infections (BSI). METHODS This multicentre, retrospective cohort study analysed data from 14 public hospitals in Italy, including all consecutive adult patients admitted during 2021-2022 with septic shock due to P. aeruginosa BSI. We compared the outcomes of patients receiving AECT to those on adequate empirical monotherapy (AEMT) using Cox regression analyses. RESULTS Of the 98 patients who received adequate empirical antibiotic treatment for septic shock due to P. aeruginosa BSI, 24 underwent AECT and 74 were given AEMT. AECT was associated with a lower 30-day all-cause mortality (25%, six out of 24) compared to AEMT (56.8%, 42 out of 74; P = 0.007). Multivariate Cox regression analysis indicated AECT as the only factor significantly associated with improved survival (aHR 0.30; 95% CI 0.12-0.71; P = 0.006). By contrast, the use of monotherapy or combination therapy in the definitive regimen did not influence mortality (aHR 0.73; 95% CI 0.25-2.14; P = 0.568). CONCLUSIONS AECT may be associated with reduced mortality compared to monotherapy in septic shock patients due to P. aeruginosa BSI. However, the administration of definitive adequate monotherapy or combination therapy yields similar outcomes, suggesting that once susceptibility is documented, switching to a single active in vitro drug is safe and feasible. Further studies are recommended to validate these findings.
Collapse
Affiliation(s)
- Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS San Martino polyclinic Hospital, Genoa, Italy
| | - Michela Schenone
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
- Department of Infectious Diseases, Tufts University School of Medicine, Boston, MA, USA
| | - Maddalena Giannella
- Infectious Diseases Unit, IRCCS-Sant'Orsola Polyclinic, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Renato Pascale
- Infectious Diseases Unit, IRCCS-Sant'Orsola Polyclinic, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS San Martino polyclinic Hospital, Genoa, Italy
| | - Marco Muccio
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Simone Mornese Pinna
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Bianca Pari
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Francesca Giovannenze
- Department of Laboratory and Infectious Sciences, IRCCS A. Gemelli University polyclinic Foundation, Rome, Italy
| | - Nicholas Geremia
- Unit of Infectious Diseases, Department of Clinical Medicine, Dell'Angelo Hospital, Venice, Italy
| | - Malgorzata Mikulska
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS San Martino polyclinic Hospital, Genoa, Italy
| | - Eleonora Taddei
- Department of Laboratory and Infectious Sciences, IRCCS A. Gemelli University polyclinic Foundation, Rome, Italy
| | - Flavio Sangiorgi
- Department of Security and Bioethics-Infectious Diseases Section, Catholic University of the Sacred Heart, Rome, Italy
| | - Davide Fiore Bavaro
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area), University of Bari 'Aldo Moro', Bari, Italy
| | - Vincenzo Scaglione
- Infectious and Tropical Diseases Unit, Padua University Hospital, Padua, Italy
| | - Veronica Vassia
- Infectious and Tropical Disease Unit, Mauriziano Umberto I Hospital, Turin, Italy
- Infectious and Tropical Disease Unit, Civile Hospital, Ivrea, Italy
| | - Marco Merli
- Department of Infectious Diseases, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Pierluigi Viale
- Infectious Diseases Unit, IRCCS-Sant'Orsola Polyclinic, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS San Martino polyclinic Hospital, Genoa, Italy
| |
Collapse
|
4
|
Royo-Cebrecos C, Laporte-Amargós J, Peña M, Ruiz-Camps I, Garcia-Vidal C, Abdala E, Oltolini C, Akova M, Montejo M, Mikulska M, Martín-Dávila P, Herrera F, Gasch O, Drgona L, Morales HMP, Brunel AS, García E, Isler B, Kern WV, Palacios-Baena ZR, de la Calle GM, Montero MM, Kanj SS, Sipahi OR, Calik S, Márquez-Gómez I, Marin JI, Gomes MZR, Hemmatii P, Araos R, Peghin M, Del Pozo JL, Yáñez L, Tilley R, Manzur A, Novo A, Carratalà J, Gudiol C. Pseudomonas aeruginosa Bloodstream Infections Presenting with Septic Shock in Neutropenic Cancer Patients: Impact of Empirical Antibiotic Therapy. Microorganisms 2024; 12:705. [PMID: 38674650 PMCID: PMC11051800 DOI: 10.3390/microorganisms12040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
This large, multicenter, retrospective cohort study including onco-hematological neutropenic patients with Pseudomonas aeruginosa bloodstream infection (PABSI) found that among 1213 episodes, 411 (33%) presented with septic shock. The presence of solid tumors (33.3% vs. 20.2%, p < 0.001), a high-risk Multinational Association for Supportive Care in Cancer (MASCC) index score (92.6% vs. 57.4%; p < 0.001), pneumonia (38% vs. 19.2% p < 0.001), and infection due to multidrug-resistant P. aeruginosa (MDRPA) (33.8% vs. 21.1%, p < 0.001) were statistically significantly higher in patients with septic shock compared to those without. Patients with septic shock were more likely to receive inadequate empirical antibiotic therapy (IEAT) (21.7% vs. 16.2%, p = 0.020) and to present poorer outcomes, including a need for ICU admission (74% vs. 10.5%; p < 0.001), mechanical ventilation (49.1% vs. 5.6%; p < 0.001), and higher 7-day and 30-day case fatality rates (58.2% vs. 12%, p < 0.001, and 74% vs. 23.1%, p < 0.001, respectively). Risk factors for 30-day case fatality rate in patients with septic shock were orotracheal intubation, IEAT, infection due to MDRPA, and persistent PABSI. Therapy with granulocyte colony-stimulating factor and BSI from the urinary tract were associated with improved survival. Carbapenems were the most frequent IEAT in patients with septic shock, and the use of empirical combination therapy showed a tendency towards improved survival. Our findings emphasize the need for tailored management strategies in this high-risk population.
Collapse
Affiliation(s)
- Cristina Royo-Cebrecos
- Internal Medicine Department, Hospital Nostra Senyora de Meritxell, SAAS, AD700 Escaldes-Engordany, Andorra;
| | - Júlia Laporte-Amargós
- Infectious Diseases Department, Bellvitge University Hospital, IDIBELL, 08907 Barcelona, Spain;
| | - Marta Peña
- Haematology Department, Institute Català d’Oncologia (ICO)–Hospital Duran i Reynals, IDIBELL, 08908 Barcelona, Spain;
| | - Isabel Ruiz-Camps
- Infectious Diseases Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
| | - Carolina Garcia-Vidal
- Infectious Diseases Department, Hospital Clínic i Provincial, 08036 Barcelona, Spain;
| | - Edson Abdala
- Instituto do Cancer do Estado de São Paulo, Faculty of Medicine, Univesity of São Paulo, Sao Paulo 01246, Brazil;
| | - Chiara Oltolini
- Unit of Infectious and Tropical Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Murat Akova
- Department of Infectious Diseases, Hacettepe University School of Medicine, 06100 Ankara, Turkey;
| | - Miguel Montejo
- Infectious Diseases Unit, Cruces University Hospital, 48903 Bilbao, Spain;
| | - Malgorzata Mikulska
- Division of Infectious Diseases, Ospedale Policlinico San Martino, University of Genoa (DISSAL), 16132 Genoa, Italy;
| | - Pilar Martín-Dávila
- Infectious Diseases Department, Ramon y Cajal Hospital, 28034 Madrid, Spain;
| | - Fabián Herrera
- Infectious Diseases Section, Department of Medicine, Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires C1430EFA, Argentina;
| | - Oriol Gasch
- Infectious Diseases Department, Hospital Universitari Parc Taulí, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 08208 Sabadell, Spain;
| | - Lubos Drgona
- Oncohematology Department, National Cancer Institute, Comenius University, 81499 Bratislava, Slovakia;
| | | | - Anne-Sophie Brunel
- Infectious Diseases and Medicine Department, Lausanne University Hospital, CHUV, 1011 Lausanne, Switzerland;
| | - Estefanía García
- Haematology Department, Reina Sofía University Hospital-IMIBIC-UCO, 14004 Córdoba, Spain;
| | - Burcu Isler
- Department of Infectious Diseases and Clinical Microbiology, Istanbul Education and Research Hospital, 34668 Istanbul, Turkey;
| | - Winfried V. Kern
- Division of Infectious Diseases, Department of Medicine II, Faculty of Medicine, University of Freiburg Medical Center, 79110 Freiburg, Germany;
| | - Zaira R. Palacios-Baena
- Unit of Infectious Diseases and Clinical Microbiology, Institute of Biomedicine of Seville (IBIS), Virgen Macarena University Hospital, 41013 Seville, Spain;
| | - Guillermo Maestr de la Calle
- Infectious Diseases Unit, Instituto de Investigación Hospital “12 de Octubre” (i + 12), School of Medicine, “12 de Octubre” University Hospital, Universidad Complutense, 28041 Madrid, Spain;
| | - Maria Milagro Montero
- Infectious Pathology and Antimicrobials Research Group (IPAR), Infectious Diseases Service, Hospital del Mar, Institut Hospital del Mar d’Investigations Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, 08003 Barcelona, Spain;
| | - Souha S. Kanj
- Infectious Diseases Division, American University of Beirut Medical Center, Beirut 110236, Lebanon;
| | - Oguz R. Sipahi
- Faculty of Medicine, Ege University, 35040 Izmir, Turkey;
| | - Sebnem Calik
- Department of Infectious Diseases and Clinical Microbiology, University of Health Science Izmir Bozyaka Training and Research Hospital, 35170 Izmir, Turkey;
| | | | - Jorge I. Marin
- Infectious Diseases and Clinical Microbiology Department, Clínica Maraya, Manizales 170001-17, Colombia;
| | - Marisa Z. R. Gomes
- Hospital Federal dos Servidores do Estado, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Ministério da Saúde, Rio de Janeiro 20221-161, Brazil;
| | - Philipp Hemmatii
- Department of Hematology, Oncology and Palliative Care, Klinikum Ernst von Bergmann, Academic Teaching Hospital of Charité University Medical School, 10117 Berlin, Germany;
| | - Rafael Araos
- Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago de Chile 12461, Chile;
| | - Maddalena Peghin
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, 21100 Varese, Italy;
| | - Jose L. Del Pozo
- Infectious Diseases and Microbiology Unit, Navarra University Clinic, 31008 Pamplona, Spain;
| | - Lucrecia Yáñez
- Haematology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain;
| | - Robert Tilley
- Microbiology Department, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, UK;
| | - Adriana Manzur
- Infectious Diseases, Hospital Rawson, San Juan J5400, Argentina;
| | - Andrés Novo
- Haematology Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain;
| | - Jordi Carratalà
- Infectious Diseases Department, Bellvitge University Hospital, IDIBELL, 08907 Barcelona, Spain;
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, carrer de la Feixa Llarga, s/n, 08907 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlota Gudiol
- Infectious Diseases Department, Bellvitge University Hospital, IDIBELL, 08907 Barcelona, Spain;
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, carrer de la Feixa Llarga, s/n, 08907 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Infectious Diseases Unit, Catalan Institute of Oncology (ICO), Duran i Reynals Hospital, IDIBELL, 08908 Barcelona, Spain
| |
Collapse
|
5
|
Contejean A, Maillard A, Canouï E, Kernéis S, Fantin B, Bouscary D, Parize P, Garcia-Vidal C, Charlier C. Advances in antibacterial treatment of adults with high-risk febrile neutropenia. J Antimicrob Chemother 2023; 78:2109-2120. [PMID: 37259598 DOI: 10.1093/jac/dkad166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND High-risk febrile neutropenia (HR-FN) is a life-threatening complication in patients with haematological malignancies or receiving myelosuppressive chemotherapy. Since the last international guidelines were published over 10 years ago, there have been major advances in the understanding and management of HR-FN, including on antibiotic pharmacokinetics and discontinuation/de-escalation strategies. OBJECTIVES Summarizing major advances in the field of antibacterial therapy in patients with HR-FN: empirical therapy, pharmacokinetics of antibiotics and antibiotic stewardship. SOURCES Narrative review based on literature review from PubMed. We focused on studies published between 2010 and 2023 about the pharmacokinetics of antimicrobials, management of antimicrobial administration, and discontinuation/de-escalation strategies. We did not address antimicrobial prophylaxis, viral or fungal infections. CONTENT Several high-quality publications have highlighted important modifications of antibiotic pharmacokinetics in HR-FN, with standard dosages exposing patients to underdosing. These recent clinical and population pharmacokinetics studies help improve management protocols with optimized initial dosing and infusion rules for β-lactams, vancomycin, daptomycin and amikacin; they highlight the potential benefits of therapeutic drug monitoring. A growing body of evidence also shows that antibiotic discontinuation/de-escalation strategies are beneficial for bacterial ecology and patients' outcome. We further discuss methods and limitations for implementation of such protocols in haematology. IMPLICATIONS We highlight recent information about the management of antibacterial therapy in HR-FN that might be considered in updated guidelines for HR-FN management.
Collapse
Affiliation(s)
- Adrien Contejean
- Service d'Hématologie, Centre Hospitalier Annecy Genevois, 1 Avenue de l'hôpital, F-74370 Epagny Metz-Tessy, France
- Équipe Mobile d'Infectiologie, AP-HP, APHP.CUP, Hôpital Cochin, F-75014 Paris, France
- Université Paris Cité, Faculté de Médecine, F-75006 Paris, France
| | - Alexis Maillard
- Équipe Mobile d'Infectiologie, AP-HP, APHP.CUP, Hôpital Cochin, F-75014 Paris, France
| | - Etienne Canouï
- Équipe Mobile d'Infectiologie, AP-HP, APHP.CUP, Hôpital Cochin, F-75014 Paris, France
| | - Solen Kernéis
- Université Paris Cité, Faculté de Médecine, F-75006 Paris, France
- Équipe de Prévention du Risque Infectieux, AP-HP, Hôpital Bichat, F-75018 Paris, France
- Université Paris Cité, INSERM, IAME, F-75018 Paris, France
| | - Bruno Fantin
- Université Paris Cité, Faculté de Médecine, F-75006 Paris, France
- Département de Médecine Interne, AP-HP, Hôpital Beaujon, F-92110, Clichy, France
| | - Didier Bouscary
- Université Paris Cité, Faculté de Médecine, F-75006 Paris, France
- Service d'Hématologie, AP-HP, APHP.CUP, Hôpital Cochin, F-75014 Paris, France
| | - Perrine Parize
- Service de Maladies Infectieuses, AP-HP, APHP.CUP, Hôpital Necker-Enfants Malades, F-75015 Paris, France
| | - Carolina Garcia-Vidal
- Infectious Diseases Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
- CIBERINF, Madrid, Spain
| | - Caroline Charlier
- Équipe Mobile d'Infectiologie, AP-HP, APHP.CUP, Hôpital Cochin, F-75014 Paris, France
- Université Paris Cité, Faculté de Médecine, F-75006 Paris, France
- National Reference Center Listeriosis WHO Collaborating Center, Institut Pasteur, F-75015 Paris, France
- Biology of Infection Unit, Inserm U1117 Institut Pasteur, F-75015 Paris, France
| |
Collapse
|
6
|
Chumbita M, Puerta-Alcalde P, Yáñez L, Angeles Cuesta M, Chinea A, Español-Morales I, Fernandez-Abellán P, Gudiol C, González-Sierra P, Rojas R, Sánchez-Pina JM, Vadillo IS, Sánchez M, Varela R, Vázquez L, Guerreiro M, Monzo P, Lopera C, Aiello TF, Peyrony O, Soriano A, Garcia-Vidal C. High Rate of Inappropriate Antibiotics in Patients with Hematologic Malignancies and Pseudomonas aeruginosa Bacteremia following International Guideline Recommendations. Microbiol Spectr 2023; 11:e0067423. [PMID: 37367629 PMCID: PMC10434044 DOI: 10.1128/spectrum.00674-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Optimal coverage of Pseudomonas aeruginosa is challenging in febrile neutropenic patients due to a progressive increase in antibiotic resistance worldwide. We aimed to detail current rates of resistance to antibiotics recommended by international guidelines for P. aeruginosa isolated from bloodstream infections (BSI) in patients with hematologic malignancies. Secondarily, we aimed to describe how many patients received inappropriate empirical antibiotic treatment (IEAT) and its impact on mortality. We conducted a retrospective, multicenter cohort study of the last 20 BSI episodes caused by P. aeruginosa in patients with hematologic malignancies from across 14 university hospitals in Spain. Of the 280 patients with hematologic malignancies and BSI caused by P. aeruginosa, 101 (36%) had strains resistant to at least one of the β-lactam antibiotics recommended in international guidelines, namely, cefepime, piperacillin-tazobactam, and meropenem. Additionally, 21.1% and 11.4% of the strains met criteria for MDR and XDR P. aeruginosa, respectively. Even if international guidelines were followed in most cases, 47 (16.8%) patients received IEAT and 66 (23.6%) received inappropriate β-lactam empirical antibiotic treatment. Thirty-day mortality was 27.1%. In the multivariate analysis, pulmonary source (OR 2.22, 95% CI 1.14 to 4.34) and IEAT (OR 2.67, 95% CI 1.37 to 5.23) were factors independently associated with increased mortality. We concluded that P. aeruginosa-causing BSI in patients with hematologic malignancies is commonly resistant to antibiotics recommended in international guidelines, which is associated with frequent IEAT and higher mortality. New therapeutic strategies are needed. IMPORTANCE Bloodstream infection (BSI) caused by P. aeruginosa is related with an elevated morbidity and mortality in neutropenic patients. For this reason, optimal antipseudomonal coverage has been the basis of all historical recommendations in the empirical treatment of febrile neutropenia. However, in recent years the emergence of multiple types of antibiotic resistances has posed a challenge in treating infections caused by this microorganism. In our study we postulated that P. aeruginosa-causing BSI in patients with hematologic malignancies is commonly resistant to antibiotics recommended in international guidelines. This observation is associated with frequent IEAT and increased mortality. Consequently, there is a need for a new therapeutic strategy.
Collapse
Affiliation(s)
- Mariana Chumbita
- Hospital Clínic de Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Pedro Puerta-Alcalde
- Hospital Clínic de Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Lucrecia Yáñez
- Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | | | | | | | | | - Carlota Gudiol
- Hospital Universitario de Bellvitge, Institut Català d'Oncologia, IDIBELL, l'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Rafael Rojas
- Hospital Universitario Reina Sofia, Córdoba, Spain
| | | | | | | | | | - Lourdes Vázquez
- Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | | | - Patricia Monzo
- Hospital Clínic de Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Lopera
- Hospital Clínic de Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | | | - Oliver Peyrony
- Hospital Clínic de Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Emergency Department, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alex Soriano
- Hospital Clínic de Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Barcelona, Spain
| | - Carolina Garcia-Vidal
- Hospital Clínic de Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Barcelona, Spain
| |
Collapse
|
7
|
Antimicrobial Treatment of Pseudomonas aeruginosa Severe Sepsis. Antibiotics (Basel) 2022; 11:antibiotics11101432. [PMID: 36290092 PMCID: PMC9598900 DOI: 10.3390/antibiotics11101432] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa is a pathogen often encountered in a healthcare setting. It has consistently ranked among the most frequent pathogens seen in nosocomial infections, particularly bloodstream and respiratory tract infections. Aside from having intrinsic resistance to many antibiotics, it rapidly acquires resistance to novel agents. Given the high mortality of pseudomonal infections generally, and pseudomonal sepsis particularly, and with the rise of resistant strains, treatment can be very challenging for the clinician. In this paper, we will review the latest evidence for the optimal treatment of P. aeruginosa sepsis caused by susceptible as well as multidrug-resistant strains including the difficult to treat pathogens. We will also discuss the mode of drug infusion, indications for combination therapy, along with the proper dosing and duration of treatment for various conditions with a brief discussion of the use of non-antimicrobial agents.
Collapse
|
8
|
Royo-Cebrecos C, Laporte-Amargós J, Peña M, Ruiz-Camps I, Puerta-Alcalde P, Abdala E, Oltolini C, Akova M, Montejo M, Mikulska M, Martín-Dávila P, Herrera F, Gasch O, Drgona L, Morales HMP, Brunel AS, García E, Isler B, Kern WV, Palacios-Baena ZR, de la Calle GM, Montero MM, Kanj SS, Sipahi OR, Calik S, Márquez-Gómez I, Marin JI, Gomes MZR, Hemmatti P, Araos R, Peghin M, del Pozo JL, Yáñez L, Tilley R, Manzur A, Novo A, Carratalà J, Gudiol C. Pseudomonas aeruginosa Bloodstream Infections in Patients with Cancer: Differences between Patients with Hematological Malignancies and Solid Tumors. Pathogens 2022; 11:pathogens11101132. [PMID: 36297188 PMCID: PMC9610728 DOI: 10.3390/pathogens11101132] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives: To assess the clinical features and outcomes of Pseudomonas aeruginosa bloodstream infection (PA BSI) in neutropenic patients with hematological malignancies (HM) and with solid tumors (ST), and identify the risk factors for 30-day mortality. Methods: We performed a large multicenter, retrospective cohort study including onco-hematological neutropenic patients with PA BSI conducted across 34 centers in 12 countries (January 2006−May 2018). Episodes occurring in hematologic patients were compared to those developing in patients with ST. Risk factors associated with 30-day mortality were investigated in both groups. Results: Of 1217 episodes of PA BSI, 917 occurred in patients with HM and 300 in patients with ST. Hematological patients had more commonly profound neutropenia (0.1 × 109 cells/mm) (67% vs. 44.6%; p < 0.001), and a high risk Multinational Association for Supportive Care in Cancer (MASCC) index score (32.2% vs. 26.7%; p = 0.05). Catheter-infection (10.7% vs. 4.7%; p = 0.001), mucositis (2.4% vs. 0.7%; p = 0.042), and perianal infection (3.6% vs. 0.3%; p = 0.001) predominated as BSI sources in the hematological patients, whereas pneumonia (22.9% vs. 33.7%; p < 0.001) and other abdominal sites (2.8% vs. 6.3%; p = 0.006) were more common in patients with ST. Hematological patients had more frequent BSI due to multidrug-resistant P. aeruginosa (MDRPA) (23.2% vs. 7.7%; p < 0.001), and were more likely to receive inadequate initial antibiotic therapy (IEAT) (20.1% vs. 12%; p < 0.001). Patients with ST presented more frequently with septic shock (45.8% vs. 30%; p < 0.001), and presented worse outcomes, with increased 7-day (38% vs. 24.2%; p < 0.001) and 30-day (49% vs. 37.3%; p < 0.001) case-fatality rates. Risk factors for 30-day mortality in hematologic patients were high risk MASCC index score, IEAT, pneumonia, infection due to MDRPA, and septic shock. Risk factors for 30-day mortality in patients with ST were high risk MASCC index score, IEAT, persistent BSI, and septic shock. Therapy with granulocyte colony-stimulating factor was associated with survival in both groups. Conclusions: The clinical features and outcomes of PA BSI in neutropenic cancer patients showed some differences depending on the underlying malignancy. Considering these differences and the risk factors for mortality may be useful to optimize their therapeutic management. Among the risk factors associated with overall mortality, IEAT and the administration of granulocyte colony-stimulating factor were the only modifiable variables.
Collapse
Affiliation(s)
- Cristina Royo-Cebrecos
- Internal Medicine Department, Hospital Nostra Senyora de Meritxell, Andorra Health Services (SAAS), AD700 Escaldes-Engordany, Andorra
| | - Julia Laporte-Amargós
- Infectious Diseases Department, Bellvitge University Hospital, IDIBELL, University of Barcelona, 08907 Barcelona, Spain
- Institut Català d’Oncologia (ICO), Hospital Duran i Reynals, IDIBELL, 08907 Barcelona, Spain
| | - Marta Peña
- Hematology Department, Institut Català d’Oncologia (ICO)–Hospital Duran i Reynals, IDIBELL, 08907 Barcelona, Spain
| | - Isabel Ruiz-Camps
- Infectious Diseases Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Pedro Puerta-Alcalde
- Infectious Diseases Department, Hospital Clínic i Provincial, 08035 Barcelona, Spain
| | - Edson Abdala
- Instituto do Câncer do Estado de São Paulo, Faculty of Medicine, Univesity of São Paulo, Sao Paulo 01246, Brazil
| | - Chiara Oltolini
- Unit of Infectious and Tropical Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Murat Akova
- Department of Infectious Diseases, Hacettepe University School of Medicine, 06230 Ankara, Turkey
| | - Miguel Montejo
- Infectious Diseases Unit, Cruces University Hospital, 48903 Bilbao, Spain
| | - Malgorzata Mikulska
- Division of Infectious Diseases, University of Genoa (DISSAL) and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | - Fabian Herrera
- Infectious Diseases Section, Department of Medicine, Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires C1430EFA, Argentina
| | - Oriol Gasch
- Infectious Diseases Department, Parc Taulí University Hospital, 08208 Sabadell, Spain
| | - Lubos Drgona
- Oncohematology Department, Comenius University and National Cancer Institute, 81499 Bratislava, Slovakia
| | | | - Anne-Sophie Brunel
- Infectious Diseases Department, Department of Medicine, Lausanne University Hospital, (CHUV), 1011 Lausanne, Switzerland
| | - Estefanía García
- Hematology Department, Reina Sofía University Hospital-IMIBIC-UCO, Córdoba 14004, Argentina
| | - Burcu Isler
- Department of Infectious Diseases and Clinical Microbiology, Istanbul Education and Research Hospital, 34668 Istanbul, Turkey
| | - Winfried V. Kern
- Division of Infectious Diseases, Department of Medicine II, University of Freiburg Medical Center and Faculty of Medicine, 79106 Freiburg, Germany
| | - Zaira R. Palacios-Baena
- Unit of Infectious Diseases and Clinical Microbiology, Virgen Macarena University Hospital, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | - Guillermo Maestro de la Calle
- Infectious Diseases Unit, Instituto de Investigación Hospital “12 de Octubre” (i+12), “12 de Octubre”, University Hospital, School of Medicine, Universidad Complutense, 28041 Madrid, Spain
| | - Maria Milagro Montero
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d’Investigations Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Souha S. Kanj
- Infectious Diseases Division, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Oguz R. Sipahi
- Faculty of Medicine, Ege University, 35040 Izmir, Turkey
| | - Sebnem Calik
- University of Health Science Izmir Bozyaka Training and Research Hospital, 35170 Izmir, Turkey
| | | | - Jorge I. Marin
- Infectious Diseases and Clinical Microbiology Department, Clínica Maraya, Pereira, Colombia. Critical Care and Clinical Microbiology Department, Manizales 170001-17, Colombia
| | - Marisa Z. R. Gomes
- Hospital Federal dos Servidores do Estado, and Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Ministério da Saúde, Rio de Janeiro 20221-161, Brazil
| | - Philipp Hemmatti
- Department of Hematology, Oncology and Palliative Care, Klinikum Ernst von Bergmann, Academic Teaching Hospital, Charité University Medical School, 10117 Berlin, Germany
| | - Rafael Araos
- Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago de Chile 12461, Chile, and Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R)
| | - Maddalena Peghin
- Infectious Diseases Clinic, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata in Udine, and Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, 33100 Udine, Italy
| | - José Luis del Pozo
- Infectious Diseases and Microbiology Unit, Navarra University Clinic, 31008 Pamplona, Spain
| | - Lucrecia Yáñez
- Hematology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Robert Tilley
- Microbiology Department, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, UK
| | - Adriana Manzur
- Infectious Diseases, Hospital Rawson, San Juan J5400, Argentina
| | - Andrés Novo
- Hematology Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain
| | - Jordi Carratalà
- Infectious Diseases Department, Bellvitge University Hospital, IDIBELL, University of Barcelona, 08907 Barcelona, Spain
- University of Barcelona, 08007 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlota Gudiol
- Infectious Diseases Department, Bellvitge University Hospital, IDIBELL, University of Barcelona, 08907 Barcelona, Spain
- Institut Català d’Oncologia (ICO), Hospital Duran i Reynals, IDIBELL, 08907 Barcelona, Spain
- University of Barcelona, 08007 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-932607625; Fax: +34-932607637
| |
Collapse
|
9
|
Three-Year Evaluation of Pseudomonas aeruginosa Bacteremia in Patients Admitted to a University-Affiliated Hospital, Mashhad, Iran. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-126998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Pseudomonas aeruginosa is an opportunistic gram-negative pathogen that can cause infection in almost any body part. Objectives: We aimed to evaluate the characteristics of patients with P. aeruginosa bloodstream infection (BSI). Methods: In this cross-sectional study, we retrospectively evaluated the records of 35 patients with P. aeruginosa BSI admitted to the Imam Reza Hospital, Mashhad, Iran, during 2012 - 2015. Age, sex, clinical symptoms, risk factors, underlying diseases, and the antibiogram test results were recorded and compared between nosocomial and community-acquired infection (CAI) dead and alive patients using the chi-square test. Data were analyzed using SPSS software, version 21. Results: The patients had a mean age of 54.57 ± 20.75 years, with 19 of them being men (54.3%). Intubation was only required in the deceased group (N = 19; P = 0.014). Tachypnea was more frequent (63.2% vs. 13.2%, P = 0.003), and appropriate treatment was less frequent (27.8% vs. 66.7%; P = 0.02) in the deceased group compared to the control group. Most patients with nosocomial infection (N = 24) passed away (66.7%; P = 0.03). All nine patients with a history of burning had a nosocomial infection (P = 0.01). Shivering and decreased consciousness were more frequent in patients with CAI (both P = 0.03) than in other patients. The antibiogram test results showed high resistance to multiple antibiotics. Conclusions: Considering the high mortality rate of P. aeruginosa BSI and resistance to multiple antibiotics, it is necessary to pay greater attention to the prevention of nosocomial infection with this pathogen, especially in patients admitted to burn centers and those with specific clinical signs, like tachypnea and leukocytosis.
Collapse
|