1
|
Morita H, Kodama Y. Quantitative analysis of trichocysts in Paramecium bursaria following artificial removal and infection with the symbiotic Chlorella variabilis. Eur J Protistol 2024; 95:126115. [PMID: 39216315 DOI: 10.1016/j.ejop.2024.126115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The ciliate Paramecium bursaria possesses cell organelles called trichocysts that have defensive functions. Paramecium bursaria is capable of symbiosis with Chlorella variabilis, and the symbiotic algae are situated in close proximity to the trichocysts. To clarify the relationship between trichocysts in P. bursaria and the presence or absence of the intracellular symbiotic C. variabilis, this study compared the regeneration capacity of trichocysts in alga-free and algae-bearing P. bursaria. In addition, trichocyst protein abundance was measured when alga-free P. bursaria specimens were artificially infected with Chlorella. After completely removing trichocysts from P. bursaria cells by treatment with lysozyme and observing them after 24 h, the percentage of regenerating trichocysts in the entire cell was significantly higher in alga-free cells than that in algae-bearing cells. We also developed a simple method for the isolation of high-purity trichocysts to quantify trichocyst protein amounts. There was a significant difference in the trichocyst protein abundance of P. bursaria before and one week after mixing with Chlorella (i.e., after the establishment of symbiosis with algae). This study shows the importance of trichocysts in alga-free P. bursaria as well as their competition with symbiotic C. variabilis for attachment sites during the algal infection process.
Collapse
Affiliation(s)
- Hikaru Morita
- Major in Agricultural and Life Sciences, Graduate School of Natural Science and Technology, Shimane University, Matsue-shi, Japan
| | - Yuuki Kodama
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue-shi, Japan.
| |
Collapse
|
2
|
Melekhin M, Potekhin A, Gentekaki E, Chantangsi C. Paramecium (Oligohymenophorea, Ciliophora) diversity in Thailand sheds light on the genus biogeography and reveals new phylogenetic lineages. J Eukaryot Microbiol 2024; 71:e13004. [PMID: 37849422 DOI: 10.1111/jeu.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Paramecium (Ciliophora, Oligohymenophorea) is a good model to study ciliate biogeography. Extensive sampling mainly in northern hemisphere has led to 16 valid morphological species description thus far. However, a majority of hard-to-reach regions, including South East Asia, are underinvestigated. Our study combined traditional morphological and molecular approaches to reveal the biodiversity of Paramecium in Thailand from more than 110 samples collected in 10 provinces. Representatives of seven morphological species were identified from our collection, including the rare species, such as P. gigas and P. jenningsi. Additionally, we detected five different sibling species of the P. aurelia complex, described a new cryptic species P. hiwatashii n. sp. phylogenetically related to P. caudatum, and discovered a potentially new genetic species of the P. bursaria species complex. We also documented a variety of bacterial cytoplasmic symbionts from at least nine monoclonal cultures of Paramecium.
Collapse
Affiliation(s)
- Maksim Melekhin
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, St Petersburg, Russia
| | - Alexey Potekhin
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Chitchai Chantangsi
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Fokin SI, Lebedeva NA, Potekhin A, Gammuto L, Petroni G, Serra V. Holospora-like bacteria "Candidatus Gortzia yakutica" and Preeria caryophila: Ultrastructure, promiscuity, and biogeography of the symbionts. Eur J Protistol 2023; 90:125998. [PMID: 37356197 DOI: 10.1016/j.ejop.2023.125998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Two already known representatives of Holospora-like bacteria, "Candidatus Gortzia yakutica" from Paramecium putrinum and Preeria caryophila, originally retrieved from the Paramecium aurelia complex, were found in new hosts: Paramecium nephridiatum and Paramecium polycaryum, respectively. In the present study, these bacteria were investigated using morphological and molecular methods. For "Ca. G. yakutica", the first details of the electron microscopic structure in the main and new hosts were provided. Regarding Pr. caryophila, the ultrastructural description of this species was implemented by several features previously unknown, such as the so called "membrane cluster" dividing periplasm from cytoplasm and fine composition of infectious forms before and during its releasing from the infected macronucleus. The new combinations of these Holospora-like bacteria with ciliate hosts were discussed from biogeographical and ecological points of view. Host specificity of symbionts as a general paradigm was critically reviewed as well.
Collapse
Affiliation(s)
| | - Natalia A Lebedeva
- Centre of Core Facilities "Culture Collections of Microorganisms", Saint Petersburg State University, Russia
| | - Alexey Potekhin
- Laboratory of Cellular and Molecular Protistology, Zoological Institute of Russian Academy of Sciences, Saint Petersburg, Russia; Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | | | - Giulio Petroni
- Department of Biology, University of Pisa, Italy; CIME, Centro Interdipartimentale di Microscopia Elettronica, Università di Pisa, Pisa, Italy; CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, Italy
| | | |
Collapse
|
4
|
Van Houten J. A Review for the Special Issue on Paramecium as a Modern Model Organism. Microorganisms 2023; 11:937. [PMID: 37110360 PMCID: PMC10143506 DOI: 10.3390/microorganisms11040937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
This review provides background and perspective for the articles contributing to the Special Issue of MDPI Micro-organisms on Paramecium as a Modern Model Organism. The six articles cover a variety of topics, each taking advantage of an important aspect of Paramecium biology: peripheral surface proteins that are developmentally regulated, endosymbiont algae and bacteria, ion channel regulation by calmodulin, regulation of cell mating reactivity and senescence, and the introns that dwell in the large genome. Each article highlights a significant aspect of Paramecium and its versatility.
Collapse
Affiliation(s)
- Judith Van Houten
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
5
|
Dirren-Pitsch G, Bühler D, Salcher MM, Bassin B, Le Moigne A, Schuler M, Pernthaler J, Posch T. FISHing for ciliates: Catalyzed reporter deposition fluorescence in situ hybridization for the detection of planktonic freshwater ciliates. Front Microbiol 2022; 13:1070232. [PMID: 36578568 PMCID: PMC9790926 DOI: 10.3389/fmicb.2022.1070232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
Planktonic ciliate species form multiple trophic guilds and are central components of freshwater food webs. Progress in molecular analytical tools has opened new insight into ciliate assemblages. However, high and variable 18S rDNA copy numbers, typical for ciliates, make reliable quantification by amplicon sequencing extremely difficult. For an exact determination of abundances, the classical morphology-based quantitative protargol staining is still the method of choice. Morphotype analyses, however, are time consuming and need specific taxonomic expertise. Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) may represent a promising tool for the analysis of planktonic ciliates by combining molecular identification with microscopic quantification. We tested the applicability of CARD-FISH using nine cultured ciliate species. Eight species- and three genus-specific oligonucleotide probes were designed based on their 18S rRNA genes. The CARD-FISH protocol was adapted and the specificity of probes was established. We subsequently examined the precision of quantitation by CARD-FISH on single cultures and mock assemblages. Successful tests on lake water samples proved that planktonic ciliates could be identified and quantified in field samples by CARD-FISH. Double hybridizations allowed studying interspecific predator prey interactions between two ciliate species. In summary, we demonstrate that CARD-FISH with species-specific probes can facilitate studies on the population dynamics of closely related, small sized or cryptic species at high sampling frequencies.
Collapse
Affiliation(s)
- Gianna Dirren-Pitsch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Dominique Bühler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Michaela M. Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budĕjovice, Czechia
| | - Barbara Bassin
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Alizée Le Moigne
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Martina Schuler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Thomas Posch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| |
Collapse
|
6
|
Characterization of a Pseudokeronopsis Strain (Ciliophora, Urostylida) and Its Bacterial Endosymbiont “Candidatus Trichorickettsia” (Alphaproteobacteria, Rickettsiales). DIVERSITY 2022. [DOI: 10.3390/d14121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Symbiotic associations between bacteria and ciliate protists are rather common. In particular, several cases were reported involving bacteria of the alphaproteobacterial lineage Rickettsiales, but the diversity, features, and interactions in these associations are still poorly understood. In this work, we characterized a novel ciliate protist strain originating from Brazil and its associated Rickettsiales endosymbiont by means of live and ultrastructural observations, as well as molecular phylogeny. Though with few morphological peculiarities, the ciliate was found to be phylogenetically affiliated with Pseudokeronopsis erythrina, a euryhaline species, which is consistent with its origin from a lagoon with significant spatial and seasonal salinity variations. The bacterial symbiont was assigned to “Candidatus Trichorickettsia mobilis subsp. hyperinfectiva”, being the first documented case of a Rickettsiales associated with urostylid ciliates. It resided in the host cytoplasm and bore flagella, similarly to many, but not all, conspecifics in other host species. These findings highlight the ability of “Candidatus Trichorickettsia” to infect multiple distinct host species and underline the importance of further studies on this system, in particular on flagella and their regulation, from a functional and also an evolutionary perspective, considering the phylogenetic proximity with the well-studied and non-flagellated Rickettsia.
Collapse
|