1
|
Vázquez X, Fernández J, Heinisch JJ, Rodicio R, Rodicio MR. Insights into the Evolution of IncR Plasmids Found in the Southern European Clone of the Monophasic Variant of Salmonella enterica Serovar Typhimurium. Antibiotics (Basel) 2024; 13:314. [PMID: 38666990 PMCID: PMC11047700 DOI: 10.3390/antibiotics13040314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024] Open
Abstract
Salmonella enterica subspecies enterica serovar 4,[5],12:i:- is a monophasic variant of S. Typhimurium which has emerged as a world-wide distributed pathogen in the last decades. Several clones have been identified within this variant, the European clone, the Spanish clone, the Southern European clone and the U.S./American clone. The present study focused on isolates of the Southern European clone that were obtained from clinical samples at Spanish hospitals. The selected isolates were multidrug resistant, with most resistance genes residing on IncR plasmids that also carried virulence genes. These plasmids had a mosaic structure, comprising a highly reduced IncR backbone, which has acquired a large amount of exogenous DNA mostly derived from pSLT and IncI1-I(alfa) plasmids. Although composed of approximately the same elements, the investigated plasmids displayed a high diversity, consistent with active evolution driven by a wealth of mobile genetic elements. They comprise multiple intact or truncated insertion sequences, transposons, pseudo-compound transposons and integrons. Particularly relevant was the role of IS26 (with six to nine copies per plasmid) in generating insertions, deletions and inversions, with many of the rearrangements uncovered by tracking the patterns of eight bp target site duplications. Most of the resistance genes detected in the analyzed isolates have been previously associated with the Southern European clone. However, erm(B), lnu(G) and blaTEM-1B are novel, with the last two carried by a second resistance plasmid found in one of the IncR-positive isolates. Thus, evolution of resistance in the Southern European clone is not only mediated by diversification of the IncR plasmids, but also through acquisition of additional plasmids. All isolates investigated in the present study have the large deletion affecting the fljBA region previously found to justify the monophasic phenotype in the Southern European and U.S./American clones. An SNP-based phylogenetic analysis revealed the close relationship amongst our isolates, and support that those sharing the large fljBA deletion could be more heterogeneous than previously anticipated.
Collapse
Affiliation(s)
- Xenia Vázquez
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo (UO), 33006 Oviedo, Spain; (X.V.); (J.F.)
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Javier Fernández
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo (UO), 33006 Oviedo, Spain; (X.V.); (J.F.)
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, 30627 Madrid, Spain
- Research & Innovation, Artificial Intelligence and Statistical Department, Pragmatech AI Solutions, 33001 Oviedo, Spain
| | - Jürgen J. Heinisch
- Department of Genetics, Faculty of Biology and Chemistry, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany;
| | - Rosaura Rodicio
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo (UO), 33006 Oviedo, Spain
| | - M. Rosario Rodicio
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo (UO), 33006 Oviedo, Spain; (X.V.); (J.F.)
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| |
Collapse
|
2
|
Barrera S, Vázquez-Flores S, Needle D, Rodríguez-Medina N, Iglesias D, Sevigny JL, Gordon LM, Simpson S, Thomas WK, Rodulfo H, De Donato M. Serovars, Virulence and Antimicrobial Resistance Genes of Non-Typhoidal Salmonella Strains from Dairy Systems in Mexico. Antibiotics (Basel) 2023; 12:1662. [PMID: 38136696 PMCID: PMC10740734 DOI: 10.3390/antibiotics12121662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/24/2023] Open
Abstract
Salmonella isolated from dairy farms has a significant effect on animal health and productivity. Different serogroups of Salmonella affect both human and bovine cattle causing illness in both reservoirs. Dairy cows and calves can be silent Salmonella shedders, increasing the possibility of dispensing Salmonella within the farm. The aim of this study was to determine the genomic characteristics of Salmonella isolates from dairy farms and to detect the presence of virulence and antimicrobial resistance genes. A total of 377 samples were collected in a cross-sectional study from calves, periparturient cow feces, and maternity beds in 55 dairy farms from the states of Aguascalientes, Baja California, Chihuahua, Coahuila, Durango, Mexico, Guanajuato, Hidalgo, Jalisco, Queretaro, San Luis Potosi, Tlaxcala, and Zacatecas. Twenty Salmonella isolates were selected as representative strains for whole genome sequencing. The serological classification of the strains was able to assign groups to only 12 isolates, but with only 5 of those being consistent with the genomic serotyping. The most prevalent serovar was Salmonella Montevideo followed by Salmonella Meleagridis. All isolates presented the chromosomal aac(6')-Iaa gene that confers resistance to aminoglycosides. The antibiotic resistance genes qnrB19, qnrA1, sul2, aph(6)-Id, aph(3)-ld, dfrA1, tetA, tetC, flor2, sul1_15, mph(A), aadA2, blaCARB, and qacE were identified. Ten pathogenicity islands were identified, and the most prevalent plasmid was Col(pHAD28). The main source of Salmonella enterica is the maternity areas, where periparturient shedders are contaminants and perpetuate the pathogen within the dairy in manure, sand, and concrete surfaces. This study demonstrated the necessity of implementing One Health control actions to diminish the prevalence of antimicrobial resistant and virulent pathogens including Salmonella.
Collapse
Affiliation(s)
- Stephany Barrera
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro 76130, CP, Mexico; (S.B.); (D.I.); (H.R.)
| | - Sonia Vázquez-Flores
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro 76130, CP, Mexico; (S.B.); (D.I.); (H.R.)
| | - David Needle
- Veterinary Diagnostic Lab, University of New Hampshire, Durham, NH 03824, USA;
| | - Nadia Rodríguez-Medina
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca 62100, MR, Mexico;
| | - Dianella Iglesias
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro 76130, CP, Mexico; (S.B.); (D.I.); (H.R.)
| | - Joseph L. Sevigny
- Department Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; (J.L.S.); (L.M.G.); (S.S.); (W.K.T.)
| | - Lawrence M. Gordon
- Department Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; (J.L.S.); (L.M.G.); (S.S.); (W.K.T.)
| | - Stephen Simpson
- Department Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; (J.L.S.); (L.M.G.); (S.S.); (W.K.T.)
| | - W. Kelley Thomas
- Department Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; (J.L.S.); (L.M.G.); (S.S.); (W.K.T.)
| | - Hectorina Rodulfo
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro 76130, CP, Mexico; (S.B.); (D.I.); (H.R.)
| | - Marcos De Donato
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro 76130, CP, Mexico; (S.B.); (D.I.); (H.R.)
- The Center for Aquaculture Technologies, San Diego, CA 92121, USA
| |
Collapse
|
3
|
Editorial for the Special Issue “Antimicrobial Resistance and Genetic Elements in Bacteria”. Microorganisms 2023; 11:microorganisms11030670. [PMID: 36985240 PMCID: PMC10058548 DOI: 10.3390/microorganisms11030670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Throughout human history, bacterial infections have been an omnipresent threat, which have, on occasion, resulted in devastating pandemics affecting humanity [...]
Collapse
|