1
|
Mizukami-Murata S, Tsushima I, Abe S, Kitamura T, Okayasu Y. Effects of laundry-derived microplastic fibers on larval Japanese medaka (Oryzias latipes). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 983:179657. [PMID: 40398170 DOI: 10.1016/j.scitotenv.2025.179657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/10/2025] [Accepted: 05/10/2025] [Indexed: 05/23/2025]
Abstract
In recent years, laundry-derived microplastic fibers (LMFs) have been reported as one of the major sources of microplastics (MPs) released from wastewater treatment plants into the aquatic environment. Fish are considered to be among the types of aquatic biota most susceptible to ingested MPs; there is thus a need to assess the risk that LMFs pose to fish, although this remains largely unknown. Here, fluorescent LMFs were prepared using a washing machine, after which Oryzias latipes (Japanese medaka) larvae were exposed to them for 21 days to assess their toxicities. Upon exposure of the larvae to LMFs (0.2 and 2 mg/L), the typical yellow fluorescent signal of LMFs was observed mainly in the mouth, gastrointestinal tract, anus, and feces. No mortality was observed in larvae treated with either concentration of LMFs. However, decreases in body length and weight were observed upon the 2 mg/L treatment, which induced metabolites related to nucleotide metabolism. In addition, increased relative amounts of specific flora, Flavobacterium sp. and Burkholderiaceae, were observed in larvae exposed to 2 mg/L LMFs. Overall, 85.6 % of LMFs were ejected from LMF-treated medaka larvae after a 4-day depuration period; however, longer LMFs were more likely to remain in the larval gastrointestinal tract than shorter ones. These findings should deepen our understanding of the ecological effects of LMFs on freshwater fish.
Collapse
Affiliation(s)
- Satomi Mizukami-Murata
- Water Quality Team, Water Environment Research Group, Public Works Research Institute, 1-6 Minamihara, Tsukuba, Ibaraki 305-8516, Japan.
| | - Ikuo Tsushima
- Water Quality Team, Water Environment Research Group, Public Works Research Institute, 1-6 Minamihara, Tsukuba, Ibaraki 305-8516, Japan
| | - Shota Abe
- Entex Co., Ltd., 1-2-8 Asahi, Kashiwa, Chiba 277-0852, Japan
| | - Tomokazu Kitamura
- Water Quality Team, Water Environment Research Group, Public Works Research Institute, 1-6 Minamihara, Tsukuba, Ibaraki 305-8516, Japan
| | - Yuji Okayasu
- Water Quality Team, Water Environment Research Group, Public Works Research Institute, 1-6 Minamihara, Tsukuba, Ibaraki 305-8516, Japan
| |
Collapse
|
2
|
Sumithra TG, Sharma SRK, Suresh G, Gop AP, Surya S, Gomathi P, Anil MK, Sajina KA, Reshma KJ, Ebeneezar S, Narasimapallavan I, Gopalakrishnan A. Mechanistic insights into the early life stage microbiota of silver pompano ( Trachinotus blochii). Front Microbiol 2024; 15:1356828. [PMID: 38694807 PMCID: PMC11061439 DOI: 10.3389/fmicb.2024.1356828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/13/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Deep investigations of host-associated microbiota can illuminate microbe-based solutions to improve production in an unprecedented manner. The poor larval survival represents the critical bottleneck in sustainable marine aquaculture practices. However, little is known about the microbiota profiles and their governing eco-evolutionary processes of the early life stages of marine teleost, impeding the development of suitable beneficial microbial management strategies. The study provides first-hand mechanistic insights into microbiota and its governing eco-evolutionary processes in early life stages of a tropical marine teleost model, Trachinotus blochii. Methods The microbiota profiles and their dynamics from the first day of hatching till the end of metamorphosis and that of fingerling's gut during the routine hatchery production were studied using 16S rRNA amplicon-based high-throughput sequencing. Further, the relative contributions of various external factors (rearing water, live feed, microalgae, and formulated feed) to the microbiota profiles at different ontogenies was also analyzed. Results A less diverse but abundant core microbial community (~58% and 54% in the whole microbiota and gut microbiota, respectively) was observed throughout the early life stages, supporting 'core microbiota' hypothesis. Surprisingly, there were two well-differentiated clusters in the whole microbiota profiles, ≤10 DPH (days post-hatching) and > 10 DPH samples. The levels of microbial taxonomic signatures of stress indicated increased stress in the early stages, a possible explanation for increased mortality during early life stages. Further, the results suggested an adaptive mechanism for establishing beneficial strains along the ontogenetic progression. Moreover, the highly transient microbiota in the early life stages became stable along the ontogenetic progression, hypothesizing that the earlier life stages will be the best window to influence the microbiota. The egg microbiota also crucially affected the microbial community. Noteworthily, both water and the feed microbiota significantly contributed to the early microbiota, with the feed microbiota having a more significant contribution to fish microbiota. The results illustrated that rotifer enrichment would be the optimal medium for the early larval microbiota manipulations. Conclusion The present study highlighted the crucial foundations for the microbial ecology of T. blochii during early life stages with implications to develop suitable beneficial microbial management strategies for sustainable mariculture production.
Collapse
Affiliation(s)
- T. G. Sumithra
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, India
| | - S. R. Krupesha Sharma
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, India
| | - Gayathri Suresh
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, India
- Cochin University of Science and Technology, Kochi, Kerala, India
| | - Ambarish P. Gop
- Vizhinjam Regional Centre of ICAR-Central Marine Fisheries Research Institute, Thiruvananthapuram, Kerala, India
| | - S. Surya
- Vizhinjam Regional Centre of ICAR-Central Marine Fisheries Research Institute, Thiruvananthapuram, Kerala, India
| | - P. Gomathi
- Vizhinjam Regional Centre of ICAR-Central Marine Fisheries Research Institute, Thiruvananthapuram, Kerala, India
| | - M. K. Anil
- Vizhinjam Regional Centre of ICAR-Central Marine Fisheries Research Institute, Thiruvananthapuram, Kerala, India
| | - K. A. Sajina
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, India
| | - K. J. Reshma
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, India
| | - Sanal Ebeneezar
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, India
| | - Iyyapparaja Narasimapallavan
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, India
| | - A. Gopalakrishnan
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, India
| |
Collapse
|
3
|
Jian M, Chen X, Liu S, Liu Y, Liu Y, Wang Q, Tu W. Combined exposure with microplastics increases the toxic effects of PFOS and its alternative F-53B in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170948. [PMID: 38365036 DOI: 10.1016/j.scitotenv.2024.170948] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Microplastics (MPs) can adsorb and desorb organic pollutants, which may alter their biotoxicities. Although the toxicity of perfluorooctane sulfonate (PFOS) and its alternative 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) to organisms has been reported, the comparative study of their combined toxic effects with MPs on aquatic organisms is limited. In this study, adult female zebrafish were exposed to 10 μg/L PFOS/F-53B and 50 μg/L MPs alone or in combination for 14 days to investigate their single and combined toxicities. The results showed that the presence of MPs reduced the concentration of freely dissolved PFOS and F-53B in the exposure solution but did not affect their bioaccumulation in the zebrafish liver and gut. The combined exposure to PFOS and MPs had the greatest impact on liver oxidative stress, immunoinflammatory, and energy metabolism disorders. 16S rRNA gene sequencing analysis revealed that the combined exposure to F-53B and MPs had the greatest impact on gut microbiota. Functional enrichment analysis predicted that the alternations in the gut microbiome could interfere with signaling pathways related to immune and energy metabolic processes. Moreover, significant correlations were observed between changes in gut microbiota and immune and energy metabolism indicators, highlighting the role of gut microbiota in host health. Together, our findings demonstrate that combined exposure to PFOS/F-53B and MPs exacerbates liver immunotoxicity and disturbances in energy metabolism in adult zebrafish compared to single exposure, potentially through dysregulation of gut microbiota.
Collapse
Affiliation(s)
- Minfei Jian
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xi Chen
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China; Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Shuai Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Yingxin Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China; School of New Energy Science and Engineering, Xinyu University, Xinyu 338004, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Qiyu Wang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
4
|
Gallet A, Halary S, Duval C, Huet H, Duperron S, Marie B. Disruption of fish gut microbiota composition and holobiont's metabolome during a simulated Microcystis aeruginosa (Cyanobacteria) bloom. MICROBIOME 2023; 11:108. [PMID: 37194081 DOI: 10.1186/s40168-023-01558-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/26/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Cyanobacterial blooms are one of the most common stressors encountered by metazoans living in freshwater lentic systems such as lakes and ponds. Blooms reportedly impair fish health, notably through oxygen depletion and production of bioactive compounds including cyanotoxins. However, in the times of the "microbiome revolution", it is surprising that so little is still known regarding the influence of blooms on fish microbiota. In this study, an experimental approach is used to demonstrate that blooms affect fish microbiome composition and functions, as well as the metabolome of holobionts. To this end, the model teleost Oryzias latipes is exposed to simulated Microcystis aeruginosa blooms of various intensities in a microcosm setting, and the response of bacterial gut communities is evaluated in terms of composition and metabolome profiling. Metagenome-encoded functions are compared after 28 days between control individuals and those exposed to highest bloom level. RESULTS The gut bacterial community of O. latipes exhibits marked responses to the presence of M. aeruginosa blooms in a dose-dependent manner. Notably, abundant gut-associated Firmicutes almost disappear, while potential opportunists increase. The holobiont's gut metabolome displays major changes, while functions encoded in the metagenome of bacterial partners are more marginally affected. Bacterial communities tend to return to original composition after the end of the bloom and remain sensitive in case of a second bloom, reflecting a highly reactive gut community. CONCLUSION Gut-associated bacterial communities and holobiont functioning are affected by both short and long exposure to M. aeruginosa, and show evidence of post-bloom resilience. These findings point to the significance of bloom events to fish health and fitness, including survival and reproduction, through microbiome-related effects. In the context of increasingly frequent and intense blooms worldwide, potential outcomes relevant to conservation biology as well as aquaculture warrant further investigation. Video Abstract.
Collapse
Affiliation(s)
- Alison Gallet
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Sébastien Halary
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Charlotte Duval
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Hélène Huet
- UMR1161 Virologie, École Nationale Vétérinaire d'Alfort, INRA - ANSES - ENVA, Maisons-Alfort, France
| | - Sébastien Duperron
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France.
- Institut Universitaire de France, Paris, France.
| | - Benjamin Marie
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France.
| |
Collapse
|
5
|
Duperron S, Foucault P, Duval C, Goto M, Gallet A, Colas S, Marie B. Multi-omics analyses from a single sample: prior metabolite extraction does not alter the 16S rRNA-based characterization of prokaryotic community in a diversity of sample types. FEMS Microbiol Lett 2023; 370:fnad125. [PMID: 37996396 DOI: 10.1093/femsle/fnad125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023] Open
Abstract
Massive sequencing of the 16S rRNA gene has become a standard first step to describe and compare microbial communities from various samples. Parallel analysis of high numbers of samples makes it relevant to the statistical testing of the influence of natural or experimental factors and variables. However, these descriptions fail to document changes in community or ecosystem functioning. Nontargeted metabolomics are a suitable tool to bridge this gap, yet extraction protocols are different. In this study, prokaryotic community compositions are documented by 16S rRNA gene sequencing after direct DNA extraction or after metabolites extraction followed by DNA extraction. Results obtained using the V3-V4 region on nonaxenic cultures of cyanobacteria, lake water column, biofilm, and gut of wild and lab-reared fish indicate that prior extraction of metabolites does not influence the obtained image of prokaryotic communities. This validates sequential extraction of metabolites followed by DNA as a way to combine 16S rRNA sequencing with metabolome characterization from a single sample. This approach has the potential to complement community structure characterization with a proxy of their functioning, without the uncertainties associated with the use of separate samples.
Collapse
Affiliation(s)
- Sébastien Duperron
- UMR7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d'Histoire Naturelle, CNRS, 12 rue Buffon, 75005 Paris, France
| | - Pierre Foucault
- UMR7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d'Histoire Naturelle, CNRS, 12 rue Buffon, 75005 Paris, France
- UMR7618 iEES-Paris, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - Charlotte Duval
- UMR7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d'Histoire Naturelle, CNRS, 12 rue Buffon, 75005 Paris, France
| | - Midoli Goto
- UMR7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d'Histoire Naturelle, CNRS, 12 rue Buffon, 75005 Paris, France
| | - Alison Gallet
- UMR7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d'Histoire Naturelle, CNRS, 12 rue Buffon, 75005 Paris, France
| | - Simon Colas
- Université de Pau et des Pays de l'Adour, E2S-UPPA, CNRS, IPREM, 2 Av. du Président Pierre Angot, 64053 Pau, France
| | - Benjamin Marie
- UMR7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d'Histoire Naturelle, CNRS, 12 rue Buffon, 75005 Paris, France
| |
Collapse
|