1
|
Passos GS, Pellegrinetti TA, Fiore MF. Metagenome-assembled bacterial genomes from long accurate reads associated with Capilliphycus salinus ALCB114379. Microbiol Resour Announc 2025; 14:e0080724. [PMID: 40079640 PMCID: PMC11984139 DOI: 10.1128/mra.00807-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/07/2025] [Indexed: 03/15/2025] Open
Abstract
We report the complete genome sequences of five bacteria associated with the marine cyanobacterium Capilliphycus salinus ALCB114379 of the phylum Pseudomonadota. This genetic diversity offers insights into the cyanosphere, shedding light on potential relationships between these microorganisms and their cyanobacterial hosts.
Collapse
Affiliation(s)
- Gabriel S. Passos
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture (CENA), Piracicaba, Brazil
| | - Thierry A. Pellegrinetti
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture (CENA), Piracicaba, Brazil
| | - Marli F. Fiore
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture (CENA), Piracicaba, Brazil
| |
Collapse
|
2
|
Lassoued K, Mahjoubi M, Asimakis E, Bel Mokhtar N, Stathopoulou P, Ben Hamouda R, Bousselmi O, Marasco R, Masmoudi AS, Daffonchio D, Tsiamis G, Cherif A. Diversity and networking of uni-cyanobacterial cultures and associated heterotrophic bacteria from the benthic microbial mat of a desert hydrothermal spring. FEMS Microbiol Ecol 2024; 100:fiae148. [PMID: 39557663 DOI: 10.1093/femsec/fiae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/08/2024] [Accepted: 11/16/2024] [Indexed: 11/20/2024] Open
Abstract
Thermal springs harbour microorganisms, often dominated by cyanobacteria, which form biofilms and microbial mats. These phototrophic organisms release organic exudates into their immediate surroundings, attracting heterotrophic bacteria that contribute to the diversity and functioning of these ecosystems. In this study, the microbial mats from a hydrothermal pool in the Ksar Ghilane oasis in the Grand Erg Oriental of the Desert Tunisia were collected to obtain cyanobacterial cultures formed by single cyanobacterial species. High-throughput analysis showed that while the microbial mat hosted diverse cyanobacteria, laboratory cultures selectively enriched cyanobacteria from the Leptolyngbya, Nodosilinea, and Arthronema. Per each of these genera, multiple non-axenic uni-cyanobacterial cultures were established, totalling 41 cultures. Cyanobacteria taxa mediated the assembly of distinct heterotrophic bacterial communities, with members of the Proteobacteria and Actinobacteria phyla dominating. The bacterial communities of uni-cyanobacterial cultures were densely interconnected, with heterotrophic bacteria preferentially co-occurring with each other. Our study highlighted the complex structures of non-axenic uni-cyanobacterial cultures, where taxonomically distinct cyanobacteria consistently associate with specific groups of heterotrophic bacteria. The observed associations were likely driven by common selection pressures in the laboratory, such as cultivation conditions and specific hosts, and may not necessarily reflect the microbial dynamic occurring in the spring microbial mats.
Collapse
Affiliation(s)
- Khaoula Lassoued
- BVBGR-LR11ES31, ISBST, Biotechpole Sidi Thabet, Univ. Manouba, Ariana 2020, Tunisia
- National Institute of Agronomy of Tunisia, University of Carthage, Tunis 1082, Tunisia
| | - Mouna Mahjoubi
- BVBGR-LR11ES31, ISBST, Biotechpole Sidi Thabet, Univ. Manouba, Ariana 2020, Tunisia
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio 30100, Greece
| | - Naima Bel Mokhtar
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio 30100, Greece
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio 30100, Greece
| | - Refka Ben Hamouda
- BVBGR-LR11ES31, ISBST, Biotechpole Sidi Thabet, Univ. Manouba, Ariana 2020, Tunisia
| | - Olfa Bousselmi
- BVBGR-LR11ES31, ISBST, Biotechpole Sidi Thabet, Univ. Manouba, Ariana 2020, Tunisia
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | | | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio 30100, Greece
| | - Ameur Cherif
- BVBGR-LR11ES31, ISBST, Biotechpole Sidi Thabet, Univ. Manouba, Ariana 2020, Tunisia
| |
Collapse
|
3
|
De Castro O, Avino M, Carraturo F, Di Iorio E, Giovannelli D, Innangi M, Menale B, Mormile N, Troisi J, Guida M. Profiling microbial communities in an extremely acidic environment influenced by a cold natural carbon dioxide spring: A study of the Mefite in Ansanto Valley, Southern Italy. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13241. [PMID: 38407001 PMCID: PMC10895555 DOI: 10.1111/1758-2229.13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
The Ansanto Valley's Mefite, one of the Earth's largest non-volcanic CO2 gas emissions, is distinguished by its cold natural carbon dioxide springs. These emissions originate from the intricate tectonics and geodynamics of the southern Apennines in Italy. Known for over two millennia for its lethal concentration of CO2 and other harmful gases, the Mefite has a reputation for being toxic and dangerous. Despite its historical significance and unique geological features, there is a lack of information on the microbial diversity associated with the Mefite's gas emissions. This study presents an integrated exploration of the microbial diversity in the mud soil, using high-throughput sequencing of 16S rRNA (Prokaryotes) and ITS2 (Fungi), alongside a geochemical site characterisation. Our findings reveal that the Mefite's unique environment imposes a significant bottleneck on microbial diversity, favouring a select few microbial groups such as Actinobacteria and Firmicutes for Prokaryotes, and Basidiomycota for Fungi.
Collapse
Affiliation(s)
- Olga De Castro
- Department of BiologyUniversity of Naples Federico IINaplesItaly
- Botanical GardenNaplesItaly
| | - Mariano Avino
- Department of Biochemistry and Functional GenomicsSherbrooke UniversitySherbrookeQuebecCanada
| | | | | | - Donato Giovannelli
- Department of BiologyUniversity of Naples Federico IINaplesItaly
- National Research CouncilInstitute of Marine Biological Resources and Biotechnologies—CNR‐IRBIMAnconaItaly
- Department of Marine and Coastal ScienceRutgers UniversityNew BrunswickNew JerseyUSA
- Marine Chemistry & Geochemistry DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
- Earth‐Life Science InstituteTokyo Institute of TechnologyTokyoJapan
| | - Michele Innangi
- EnvixLab, Department of Biosciences and TerritoryUniversity of Molise Contrada Fonte LapponePesche (IS)Italy
| | - Bruno Menale
- Department of BiologyUniversity of Naples Federico IINaplesItaly
- Botanical GardenNaplesItaly
| | - Nicolina Mormile
- Department of BiologyUniversity of Naples Federico IINaplesItaly
| | - Jacopo Troisi
- European Biomedical Research Institute of Salerno (EBRIS)SalernoItaly
- Theoreo srlMontecorvino Pugliano (SA)Italy
| | - Marco Guida
- Department of BiologyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
4
|
Bruto M, Oger PM, Got P, Bernard C, Melayah D, Cloarec LA, Duval C, Escalas A, Duperron S, Guigard L, Leboulanger C, Ader M, Sarazin G, Jézéquel D, Agogué H, Troussellier M, Hugoni M. Phytoplanktonic species in the haloalkaline Lake Dziani Dzaha select their archaeal microbiome. Mol Ecol 2023; 32:6824-6838. [PMID: 37901963 DOI: 10.1111/mec.17179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023]
Abstract
Microorganisms are key contributors of aquatic biogeochemical cycles but their microscale ecology remains largely unexplored, especially interactions occurring between phytoplankton and microorganisms in the phycosphere, that is the region immediately surrounding phytoplankton cells. The current study aimed to provide evidence of the phycosphere taking advantage of a unique hypersaline, hyperalkaline ecosystem, Lake Dziani Dzaha (Mayotte), where two phytoplanktonic species permanently co-dominate: a cyanobacterium, Arthrospira fusiformis, and a green microalga, Picocystis salinarum. To assay phycospheric microbial diversity from in situ sampling, we set up a flow cytometry cell-sorting methodology for both phytoplanktonic populations, coupled with metabarcoding and comparative microbiome diversity. We focused on archaeal communities as they represent a non-negligible part of the phycospheric diversity, however their role is poorly understood. This work is the first which successfully explores in situ archaeal diversity distribution showing contrasted phycospheric compositions, with P. salinarum phycosphere notably enriched in Woesearchaeales OTUs while A. fusiformis phycosphere was enriched in methanogenic lineages affiliated OTUs such as Methanomicrobiales or Methanofastidiosales. Most archaeal OTUs, including Woesearchaeales considered in literature as symbionts, were either ubiquitous or specific of the free-living microbiome (i.e. present in the 3-0.2 μm fraction). Seminally, several archaeal OTUs were enriched from the free-living microbiome to the phytoplankton phycospheres, suggesting (i) either the inhibition or decrease of other OTUs, or (ii) the selection of specific OTUs resulting from the physical influence of phytoplanktonic species on surrounding Archaea.
Collapse
Affiliation(s)
- Maxime Bruto
- VetAgro Sup, Anses, UMR Mycoplasmoses Animales, Marcy l'Etoile, France
| | - Philippe M Oger
- Universite Claude Bernard Lyon 1, INSA Lyon, CNRS, UMR 5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | - Patrice Got
- MARBEC, Univ Montpellier, IRD, CNRS, Ifremer, Sète, France
| | - Cécile Bernard
- UMR 7245 Molécules de Communication et Adaptations des Microorganismes (MCAM) MNHN-CNRS, Muséum National d'Histoire Naturelle, Paris Cedex 05, France
| | - Delphine Melayah
- Universite Claude Bernard Lyon 1, INSA Lyon, CNRS, UMR 5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | - Lilian A Cloarec
- Universite Claude Bernard Lyon 1, INSA Lyon, CNRS, UMR 5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | - Charlotte Duval
- UMR 7245 Molécules de Communication et Adaptations des Microorganismes (MCAM) MNHN-CNRS, Muséum National d'Histoire Naturelle, Paris Cedex 05, France
| | - Arthur Escalas
- MARBEC, Univ Montpellier, IRD, CNRS, Ifremer, Sète, France
| | - Sébastien Duperron
- UMR 7245 Molécules de Communication et Adaptations des Microorganismes (MCAM) MNHN-CNRS, Muséum National d'Histoire Naturelle, Paris Cedex 05, France
| | - Ludivine Guigard
- Universite Claude Bernard Lyon 1, INSA Lyon, CNRS, UMR 5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | | | - Magali Ader
- Institut de Physique du Globe de Paris, Université Paris Cité, Paris, France
| | - Gerard Sarazin
- Institut de Physique du Globe de Paris, Université Paris Cité, Paris, France
| | - Didier Jézéquel
- Institut de Physique du Globe de Paris, Université Paris Cité, Paris, France
- UMR CARRTEL, INRAE-USMB, Thonon, France
| | - Hélène Agogué
- LIENSs, UMR7266, La Rochelle Université - CNRS, La Rochelle, France
| | | | - Mylène Hugoni
- Universite Claude Bernard Lyon 1, INSA Lyon, CNRS, UMR 5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|