1
|
Shi Y, Gao M, Xing L, Zhu G, Wang H, Meng X. RyhB Regulates Capsular Synthesis for Serum Resistance and Virulence of Avian Pathogenic Escherichia coli. Int J Mol Sci 2025; 26:3062. [PMID: 40243847 PMCID: PMC11988350 DOI: 10.3390/ijms26073062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes bloodstream infections mainly by resisting the bactericidal action of host serum. Although various protein and polysaccharide factors involved in serum resistance have been identified, the role of small non-coding RNA (sRNA) in serum resistance has rarely been studied. The sRNA RyhB contributes to serum resistance in APEC, but the regulation mechanism of RyhB to serum resistance-related targets remains unknown. Here, we studied the regulatory mechanism of RyhB on capsule synthesis and how RyhB regulates serum resistance, macrophage phagocytosis resistance, and pathogenicity to natural hosts by regulating capsule synthesis. The results showed that RyhB upregulates capsular synthesis by interacting with the promoter regions of the capsule gene cluster and activating the translation of the capsule. The deletion of ryhB and/or neu reduced the ability of resistance to serum, macrophage phagocytosis, and pathogenicity of APEC in ducks. It can be concluded that RyhB directly upregulates the expression of capsular gene cluster and capsular synthesis and then indirectly promotes resistance to serum and macrophage phagocytosis and pathogenicity to ducks.
Collapse
Affiliation(s)
- Yuxing Shi
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.S.); (M.G.); (L.X.); (G.Z.); (H.W.)
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
| | - Mingjuan Gao
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.S.); (M.G.); (L.X.); (G.Z.); (H.W.)
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
| | - Lin Xing
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.S.); (M.G.); (L.X.); (G.Z.); (H.W.)
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.S.); (M.G.); (L.X.); (G.Z.); (H.W.)
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
| | - Heng Wang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.S.); (M.G.); (L.X.); (G.Z.); (H.W.)
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
| | - Xia Meng
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.S.); (M.G.); (L.X.); (G.Z.); (H.W.)
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
| |
Collapse
|
2
|
He M, Yin S, Huang X, Li Y, Li B, Gong T, Liu Q. Insights into the regulatory role of bacterial sncRNA and its extracellular delivery via OMVs. Appl Microbiol Biotechnol 2024; 108:29. [PMID: 38159117 DOI: 10.1007/s00253-023-12855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024]
Abstract
Small noncoding RNAs (sncRNAs) play important regulatory roles in bacterial physiological processes and host-pathogen interactions. Meanwhile, bacterial outer membrane vesicles (OMVs), as naturally secreted outer membrane structures, play a vital role in the interaction between bacteria and their living environment, including the host environment. However, most current studies focus on the biological functions of sncRNAs in bacteria or hosts, while neglecting the roles and regulatory mechanisms of the OMVs that encapsulate these sncRNAs. Therefore, this review aims to summarize the intracellular regulatory roles of bacterial sncRNAs in promoting pathogen survival by regulating virulence, modulating bacterial drug resistance, and regulating iron metabolism, and their extracellular regulatory function for influencing host immunity through host-pathogen interactions. Additionally, we introduce the key role played by OMVs, which serve as important cargoes in bacterial sncRNA-host interactions. We propose emerging pathways of sncRNA action to further discuss the mode of host-pathogen interactions, highlighting that the inhibition of sncRNA delivery by OMVs may prevent the occurrence of infection to some extent. Hence, this review lays the foundation for future prophylactic treatments against bacterial infections and strategies for addressing bacterial drug resistance. KEY POINTS: •sncRNAs have intracellular and extracellular regulatory functions in bacterial physiological processes and host-pathogen interactions. •OMVs are potential mediators between bacterial sncRNAs and host cells. •OMVs encapsulating sncRNAs have more potential biological functions.
Collapse
Affiliation(s)
- Mengdan He
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China
| | - Shuanshuan Yin
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China
| | - Xinlei Huang
- Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Yi Li
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China
| | - Biaoxian Li
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Tian Gong
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Qiong Liu
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
3
|
Khaledi M, Khatami M, Hemmati J, Bakhti S, Hoseini SA, Ghahramanpour H. Role of Small Non-Coding RNA in Gram-Negative Bacteria: New Insights and Comprehensive Review of Mechanisms, Functions, and Potential Applications. Mol Biotechnol 2024:10.1007/s12033-024-01248-w. [PMID: 39153013 DOI: 10.1007/s12033-024-01248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
Small non-coding RNAs (sRNAs) are a key part of gene expression regulation in bacteria. Many physiologic activities like adaptation to environmental stresses, antibiotic resistance, quorum sensing, and modulation of the host immune response are regulated directly or indirectly by sRNAs in Gram-negative bacteria. Therefore, sRNAs can be considered as potentially useful therapeutic options. They have opened promising perspectives in the field of diagnosis of pathogens and treatment of infections caused by antibiotic-resistant organisms. Identification of sRNAs can be executed by sequence and expression-based methods. Despite the valuable progress in the last two decades, and discovery of new sRNAs, their exact role in biological pathways especially in co-operation with other biomolecules involved in gene expression regulation such as RNA-binding proteins (RBPs), riboswitches, and other sRNAs needs further investigation. Although the numerous RNA databases are available, including 59 databases used by RNAcentral, there remains a significant gap in the absence of a comprehensive and professional database that categorizes experimentally validated sRNAs in Gram-negative pathogens. Here, we review the present knowledge about most recent and important sRNAs and their regulatory mechanism, strengths and weaknesses of current methods of sRNAs identification. Also, we try to demonstrate the potential applications and new insights of sRNAs for future studies.
Collapse
Affiliation(s)
- Mansoor Khaledi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jaber Hemmati
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahriar Bakhti
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | | - Hossein Ghahramanpour
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|