1
|
Moyo GT, Tepekule B, Katsidzira L, Blaser MJ, Metcalf CJE. Getting ahead of human-associated microbial decline in Africa: the urgency of sampling in light of epidemiological transition. Trends Microbiol 2025:S0966-842X(25)00005-8. [PMID: 40021386 DOI: 10.1016/j.tim.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 03/03/2025]
Abstract
Evidence is growing that human-associated early-life microbial diversity modulates health over the long term, via effects in the infant termed 'immune and metabolic education'. Documenting high microbial diversity contexts, such as in Africa, thus, has rich potential for understanding this aspect of the landscape of health. Yet, change on the continent is occurring rapidly, and microbial communities are shifting as behaviors and diets are altered, and antibiotic use expands; we may be losing the opportunity to obtain relevant data. After introducing what is known about the effects of early life microbial diversity on late life health, we provide an overview of what is known of the current, and expected future, trajectory of human-associated microbial diversity in Africa, introducing data on the core drivers. We argue that critical insights may be lost if better understanding of infant microbial communities in Africa is not obtained soon.
Collapse
Affiliation(s)
- Gugulethu T Moyo
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK.
| | - Burcu Tepekule
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Leolin Katsidzira
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
2
|
Fu Y, Ke S, Tang G, Guo Q, Guo Q, Wang Z, Leng R, Fan Y. Characterization of the intestinal microbiota in MSM with HIV infection. BMC Microbiol 2024; 24:192. [PMID: 38831399 PMCID: PMC11145808 DOI: 10.1186/s12866-024-03351-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND HIV-infected persons demonstrate notable disturbances in their intestinal microbiota; however, the impact of intestinal microbiota on HIV susceptibility in men who have sex with men (MSM), as well as the effects of HIV and antiretroviral therapy (ART) on their gut microbiota, remains under active study. Thus, our research focuses on clarifying the distinctions in intestinal microbiota composition among uninfected MSM and non-MSM healthy controls, investigating the alterations in early-stage intestinal microbial communities following HIV infection, and assessing how ART affects the intestinal microbiota. METHODS This study enrolled four participant groups: uninfected MSM, Recent HIV-1 infection (RHI) MSM, MSM on ART, and non-MSM healthy controls, with 30 individuals in each group. We utilized 16S ribosomal DNA (16S rDNA) amplicon sequencing to analyze fecal microbiota and employed Luminex multiplex assays to measure plasma markers for microbial translocation (LBP, sCD14) and the inflammatory marker CRP. FINDINGS Comparing uninfected MSM to non-MSM healthy controls, no substantial variances were observed in α and β diversity. Uninfected MSM had higher average relative abundances of Bacteroidetes, Prevotella, and Alloprevotella, while Bacteroides, Firmicutes, and Faecalibacterium had lower average relative abundances. MSM on ART had lower intestinal microbiota diversity than RHI MSM and uninfected MSM. In MSM on ART, Megasphaera and Fusobacterium increased, while Faecalibacterium and Roseburia decreased at genus level. Additionally, treatment with a non-nucleoside reverse transcriptase inhibitor (NNRTI) led to significant alterations in intestinal microbiota diversity and composition compared to RHI MSM. The random forest model showed that HIV infection biomarkers effectively distinguished between newly diagnosed HIV-infected MSM and HIV-negative MSM, with an ROC AUC of 76.24% (95% CI: 61.17-91.31%). CONCLUSIONS MSM showed early intestinal microbiota imbalances after new HIV infection. MSM on ART experienced worsened dysbiosis, indicating a combined effect of HIV and ART. NNRTI-based treatment notably changed intestinal microbiota, suggesting a potential direct impact of NNRTI drugs on intestinal microbiota.
Collapse
Affiliation(s)
- Yuansheng Fu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, 230601, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Susu Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Gan Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Qisheng Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Qian Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Ziwei Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Ruixue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| | - Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
3
|
Raj ST, Bruce AW, Anbalagan M, Srinivasan H, Chinnappan S, Rajagopal M, Khanna K, Chandramoorthy HC, Mani RR. COVID-19 influenced gut dysbiosis, post-acute sequelae, immune regulation, and therapeutic regimens. Front Cell Infect Microbiol 2024; 14:1384939. [PMID: 38863829 PMCID: PMC11165100 DOI: 10.3389/fcimb.2024.1384939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic outbreak caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has garnered unprecedented global attention. It caused over 2.47 million deaths through various syndromes such as acute respiratory distress, hypercoagulability, and multiple organ failure. The viral invasion proceeds through the ACE2 receptor, expressed in multiple cell types, and in some patients caused serious damage to tissues, organs, immune cells, and the microbes that colonize the gastrointestinal tract (GIT). Some patients who survived the SARS-CoV-2 infection have developed months of persistent long-COVID-19 symptoms or post-acute sequelae of COVID-19 (PASC). Diagnosis of these patients has revealed multiple biological effects, none of which are mutually exclusive. However, the severity of COVID-19 also depends on numerous comorbidities such as obesity, age, diabetes, and hypertension and care must be taken with respect to other multiple morbidities, such as host immunity. Gut microbiota in relation to SARS-CoV-2 immunopathology is considered to evolve COVID-19 progression via mechanisms of biochemical metabolism, exacerbation of inflammation, intestinal mucosal secretion, cytokine storm, and immunity regulation. Therefore, modulation of gut microbiome equilibrium through food supplements and probiotics remains a hot topic of current research and debate. In this review, we discuss the biological complications of the physio-pathological effects of COVID-19 infection, GIT immune response, and therapeutic pharmacological strategies. We also summarize the therapeutic targets of probiotics, their limitations, and the efficacy of preclinical and clinical drugs to effectively inhibit the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Sterlin T. Raj
- Department of Molecular Biology, Ekka Diagnostics, Chennai, Tamil Nadu, India
| | - Alexander W. Bruce
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Muralidharan Anbalagan
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hemalatha Srinivasan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Sasikala Chinnappan
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| | - Mogana Rajagopal
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| | - Kushagra Khanna
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Harish C. Chandramoorthy
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ravishankar Ram Mani
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Hilliard MA, Sela DA. Transmission and Persistence of Infant Gut-Associated Bifidobacteria. Microorganisms 2024; 12:879. [PMID: 38792709 PMCID: PMC11124121 DOI: 10.3390/microorganisms12050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Bifidobacterium infantis are the primary colonizers of the infant gut, yet scientific research addressing the transmission of the genus Bifidobacterium to infants remains incomplete. This review examines microbial reservoirs of infant-type Bifidobacterium that potentially contribute to infant gut colonization. Accordingly, strain inheritance from mother to infant via the fecal-oral route is likely contingent on the bifidobacterial strain and phenotype, whereas transmission via the vaginal microbiota may be restricted to Bifidobacterium breve. Additional reservoirs include breastmilk, horizontal transfer from the environment, and potentially in utero transfer. Given that diet is a strong predictor of Bifidobacterium colonization in early life and the absence of Bifidobacterium is observed regardless of breastfeeding, it is likely that additional factors are responsible for bifidobacterial colonization early in life.
Collapse
Affiliation(s)
- Margaret A. Hilliard
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - David A. Sela
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
- Department of Nutrition, University of Massachusetts, Amherst, MA 01003, USA
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
- Department of Microbiology & Physiological Systems and Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
5
|
Flores SV, Olguin-Barraza M, Maureira-Carsalade N, Roco-Videla Á. Microbiome and type 2 diabetes mellitus: The need-to-know population variability in Latin American populations. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2024; 42:118-119. [PMID: 38336427 DOI: 10.1016/j.eimce.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/22/2023] [Indexed: 02/12/2024]
Affiliation(s)
| | - Mariela Olguin-Barraza
- Facultad de Ciencias de Salud, Programa de Magister en Ciencias Químico-Biológicas, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Nelson Maureira-Carsalade
- Departamento de Ingeniería Civil, Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ángel Roco-Videla
- Facultad de Salud y Ciencias Sociales, Universidad de las Américas, Santiago, Chile
| |
Collapse
|