1
|
Batarseh TN, Hug SM, Batarseh SN, Gaut BS. Genetic Mutations That Drive Evolutionary Rescue to Lethal Temperature in Escherichia coli. Genome Biol Evol 2020; 12:2029-2044. [PMID: 32785667 PMCID: PMC7750951 DOI: 10.1093/gbe/evaa174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2020] [Indexed: 11/30/2022] Open
Abstract
Evolutionary rescue occurs when adaptation restores population growth against a lethal stressor. Here, we studied evolutionary rescue by conducting experiments with Escherichia coli at the lethal temperature of 43.0 °C, to determine the adaptive mutations that drive rescue and to investigate their effects on fitness and gene expression. From hundreds of populations, we observed that ∼9% were rescued by genetic adaptations. We sequenced 26 populations and identified 29 distinct mutations. Of these populations, 21 had a mutation in the hslVU or rpoBC operon, suggesting that mutations in either operon could drive rescue. We isolated seven strains of E. coli carrying a putative rescue mutation in either the hslVU or rpoBC operon to investigate the mutations’ effects. The single rescue mutations increased E. coli’s relative fitness by an average of 24% at 42.2 °C, but they decreased fitness by 3% at 37.0 °C, illustrating that antagonistic pleiotropy likely affected the establishment of rescue in our system. Gene expression analysis revealed only 40 genes were upregulated across all seven mutations, and these were enriched for functions in translational and flagellar production. As with previous experiments with high temperature adaptation, the rescue mutations tended to restore gene expression toward the unstressed state, but they also caused a higher proportion of novel gene expression patterns. Overall, we find that rescue is infrequent, that it is facilitated by a limited number of mutational targets, and that rescue mutations may have qualitatively different effects than mutations that arise from evolution to nonlethal stressors.
Collapse
Affiliation(s)
| | - Shaun M Hug
- Department of Ecology and Evolutionary Biology, UC Irvine
| | | | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, UC Irvine
| |
Collapse
|
2
|
Doin de Moura GG, Remigi P, Masson-Boivin C, Capela D. Experimental Evolution of Legume Symbionts: What Have We Learnt? Genes (Basel) 2020; 11:E339. [PMID: 32210028 PMCID: PMC7141107 DOI: 10.3390/genes11030339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Rhizobia, the nitrogen-fixing symbionts of legumes, are polyphyletic bacteria distributed in many alpha- and beta-proteobacterial genera. They likely emerged and diversified through independent horizontal transfers of key symbiotic genes. To replay the evolution of a new rhizobium genus under laboratory conditions, the symbiotic plasmid of Cupriavidus taiwanensis was introduced in the plant pathogen Ralstonia solanacearum, and the generated proto-rhizobium was submitted to repeated inoculations to the C. taiwanensis host, Mimosa pudica L.. This experiment validated a two-step evolutionary scenario of key symbiotic gene acquisition followed by genome remodeling under plant selection. Nodulation and nodule cell infection were obtained and optimized mainly via the rewiring of regulatory circuits of the recipient bacterium. Symbiotic adaptation was shown to be accelerated by the activity of a mutagenesis cassette conserved in most rhizobia. Investigating mutated genes led us to identify new components of R. solanacearum virulence and C. taiwanensis symbiosis. Nitrogen fixation was not acquired in our short experiment. However, we showed that post-infection sanctions allowed the increase in frequency of nitrogen-fixing variants among a non-fixing population in the M. pudica-C. taiwanensis system and likely allowed the spread of this trait in natura. Experimental evolution thus provided new insights into rhizobium biology and evolution.
Collapse
Affiliation(s)
| | | | | | - Delphine Capela
- LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31320, France; (G.G.D.d.M.); (P.R.); (C.M.-B.)
| |
Collapse
|
3
|
Belkhelfa S, Roche D, Dubois I, Berger A, Delmas VA, Cattolico L, Perret A, Labadie K, Perdereau AC, Darii E, Pateau E, de Berardinis V, Salanoubat M, Bouzon M, Döring V. Continuous Culture Adaptation of Methylobacterium extorquens AM1 and TK 0001 to Very High Methanol Concentrations. Front Microbiol 2019; 10:1313. [PMID: 31281294 PMCID: PMC6595629 DOI: 10.3389/fmicb.2019.01313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/27/2019] [Indexed: 11/13/2022] Open
Abstract
The bio-economy relies on microbial strains optimized for efficient large scale production of chemicals and fuels from inexpensive and renewable feedstocks under industrial conditions. The reduced one carbon compound methanol, whose production does not involve carbohydrates needed for the feed and food sector, can be used as sole carbon and energy source by methylotrophic bacteria like Methylobacterium extorquens AM1. This strain has already been engineered to produce various commodity and high value chemicals from methanol. The toxic effect of methanol limits its concentration as feedstock to 1% v/v. We obtained M. extorquens chassis strains tolerant to high methanol via adaptive directed evolution using the GM3 technology of automated continuous culture. Turbidostat and conditional medium swap regimes were employed for the parallel evolution of the recently characterized strain TK 0001 and the reference strain AM1 and enabled the isolation of derivatives of both strains capable of stable growth with 10% methanol. The isolates produced more biomass at 1% methanol than the ancestor strains. Genome sequencing identified the gene metY coding for an O-acetyl-L-homoserine sulfhydrylase as common target of mutation. We showed that the wildtype enzyme uses methanol as substrate at elevated concentrations. This side reaction produces methoxine, a toxic homolog of methionine incorporated in polypeptides during translation. All mutated metY alleles isolated from the evolved populations coded for inactive enzymes, designating O-acetyl-L-homoserine sulfhydrylase as a major vector of methanol toxicity. A whole cell transcriptomic analysis revealed that genes coding for chaperones and proteases were upregulated in the evolved cells as compared with the wildtype, suggesting that the cells had to cope with aberrant proteins formed during the adaptation to increasing methanol exposure. In addition, the expression of ribosomal proteins and enzymes related to energy production from methanol like formate dehydrogenases and ATP synthases was boosted in the evolved cells upon a short-term methanol stress. D-lactate production from methanol by adapted cells overexpressing the native D-lactate dehydrogenase was quantified. A significant higher lactate yield was obtained compared with control cells, indicating an enhanced capacity of the cells resistant to high methanol to assimilate this one carbon feedstock more efficiently.
Collapse
Affiliation(s)
- Sophia Belkhelfa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - David Roche
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Ivan Dubois
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Anne Berger
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Valérie A Delmas
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Laurence Cattolico
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Alain Perret
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Karine Labadie
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Aude C Perdereau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Ekaterina Darii
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Emilie Pateau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Véronique de Berardinis
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Marcel Salanoubat
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Madeleine Bouzon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Volker Döring
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| |
Collapse
|
4
|
González-González A, Hug SM, Rodríguez-Verdugo A, Patel JS, Gaut BS. Adaptive Mutations in RNA Polymerase and the Transcriptional Terminator Rho Have Similar Effects on Escherichia coli Gene Expression. Mol Biol Evol 2017; 34:2839-2855. [PMID: 28961910 PMCID: PMC5815632 DOI: 10.1093/molbev/msx216] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Modifications to transcriptional regulators play a major role in adaptation. Here, we compared the effects of multiple beneficial mutations within and between Escherichia coli rpoB, the gene encoding the RNA polymerase β subunit, and rho, which encodes a transcriptional terminator. These two genes have harbored adaptive mutations in numerous E. coli evolution experiments but particularly in our previous large-scale thermal stress experiment, where the two genes characterized alternative adaptive pathways. To compare the effects of beneficial mutations, we engineered four advantageous mutations into each of the two genes and measured their effects on fitness, growth, gene expression and transcriptional termination at 42.2 °C. Among the eight mutations, two rho mutations had no detectable effect on relative fitness, suggesting they were beneficial only in the context of epistatic interactions. The remaining six mutations had an average relative fitness benefit of ∼20%. The rpoB mutations affected the expression of ∼1,700 genes; rho mutations affected the expression of fewer genes but most (83%) were a subset of those altered by rpoB mutants. Across the eight mutants, relative fitness correlated with the degree to which a mutation restored gene expression back to the unstressed, 37.0 °C state. The beneficial mutations in the two genes did not have identical effects on fitness, growth or gene expression, but they caused parallel phenotypic effects on gene expression and genome-wide transcriptional termination.
Collapse
Affiliation(s)
- Andrea González-González
- Department of Ecology and Evolutionary Biology, University of California,
Irvine, CA
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Shaun M. Hug
- Department of Ecology and Evolutionary Biology, University of California,
Irvine, CA
| | - Alejandra Rodríguez-Verdugo
- Department of Environmental Systems Sciences, ETH Zürich, Zürich,
Switzerland
- Department of Environmental Microbiology, Eawag, Dübendorf,
Switzerland
| | | | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, University of California,
Irvine, CA
| |
Collapse
|
5
|
Rosenberg J, Yeak KC, Commichau FM. A two-step evolutionary process establishes a non-native vitamin B6 pathway in Bacillus subtilis. Environ Microbiol 2017; 20:156-168. [PMID: 29027347 DOI: 10.1111/1462-2920.13950] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022]
Abstract
Pyridoxal 5'-phosphate (PLP), the most important form of vitamin B6 serves as a cofactor for many proteins. Two alternative pathways for de novo PLP biosynthesis are known: the short deoxy-xylulose-5-phosphate (DXP)-independent pathway, which is present in the Gram-positive model bacterium Bacillus subtilis and the longer DXP-dependent pathway, which has been intensively studied in the Gram-negative model bacterium Escherichia coli. Previous studies revealed that bacteria contain many promiscuous enzymes causing a so-called 'underground metabolism', which can be important for the evolution of novel pathways. Here, we evaluated the potential of B. subtilis to use a truncated non-native DXP-dependent PLP pathway from E. coli for PLP synthesis. Adaptive laboratory evolution experiments revealed that two non-native enzymes catalysing the last steps of the DXP-dependent PLP pathway and two genomic alterations are sufficient to allow growth of vitamin B6 auxotrophic bacteria as rapid as the wild type. Thus, the existence of an underground metabolism in B. subtilis facilitates the generation of a pathway for synthesis of PLP using parts of a non-native vitamin B6 pathway. The introduction of non-native enzymes into a metabolic network and rewiring of native metabolism could be helpful to generate pathways that might be optimized for producing valuable substances.
Collapse
Affiliation(s)
- Jonathan Rosenberg
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - KahYen C Yeak
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Chaignaud P, Maucourt B, Weiman M, Alberti A, Kolb S, Cruveiller S, Vuilleumier S, Bringel F. Genomic and Transcriptomic Analysis of Growth-Supporting Dehalogenation of Chlorinated Methanes in Methylobacterium. Front Microbiol 2017; 8:1600. [PMID: 28919881 PMCID: PMC5585157 DOI: 10.3389/fmicb.2017.01600] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/07/2017] [Indexed: 11/13/2022] Open
Abstract
Bacterial adaptation to growth with toxic halogenated chemicals was explored in the context of methylotrophic metabolism of Methylobacterium extorquens, by comparing strains CM4 and DM4, which show robust growth with chloromethane and dichloromethane, respectively. Dehalogenation of chlorinated methanes initiates growth-supporting degradation, with intracellular release of protons and chloride ions in both cases. The core, variable and strain-specific genomes of strains CM4 and DM4 were defined by comparison with genomes of non-dechlorinating strains. In terms of gene content, adaptation toward dehalogenation appears limited, strains CM4 and DM4 sharing between 75 and 85% of their genome with other strains of M. extorquens. Transcript abundance in cultures of strain CM4 grown with chloromethane and of strain DM4 grown with dichloromethane was compared to growth with methanol as a reference C1 growth substrate. Previously identified strain-specific dehalogenase-encoding genes were the most transcribed with chlorinated methanes, alongside other genes encoded by genomic islands (GEIs) and plasmids involved in growth with chlorinated compounds as carbon and energy source. None of the 163 genes shared by strains CM4 and DM4 but not by other strains of M. extorquens showed higher transcript abundance in cells grown with chlorinated methanes. Among the several thousand genes of the M. extorquens core genome, 12 genes were only differentially abundant in either strain CM4 or strain DM4. Of these, 2 genes of known function were detected, for the membrane-bound proton translocating pyrophosphatase HppA and the housekeeping molecular chaperone protein DegP. This indicates that the adaptive response common to chloromethane and dichloromethane is limited at the transcriptional level, and involves aspects of the general stress response as well as of a dehalogenation-specific response to intracellular hydrochloric acid production. Core genes only differentially abundant in either strain CM4 or strain DM4 total 13 and 58 CDS, respectively. Taken together, the obtained results suggest different transcriptional responses of chloromethane- and dichloromethane-degrading M. extorquens strains to dehalogenative metabolism, and substrate- and pathway-specific modes of growth optimization with chlorinated methanes.
Collapse
Affiliation(s)
- Pauline Chaignaud
- Department of Molecular Genetics, Genomics, and Microbiology, UMR 7156 Université de Strasbourg (UNISTRA)-Centre National de la Recherche ScientifiqueStrasbourg, France.,Department of Ecological Microbiology, University of BayreuthBayreuth, Germany
| | - Bruno Maucourt
- Department of Molecular Genetics, Genomics, and Microbiology, UMR 7156 Université de Strasbourg (UNISTRA)-Centre National de la Recherche ScientifiqueStrasbourg, France
| | - Marion Weiman
- UMR 8030 Centre National de la Recherche Scientifique-CEA, DSV/IG/Genoscope, LABGeMEvry, France
| | - Adriana Alberti
- UMR 8030 Centre National de la Recherche Scientifique-CEA, DSV/IG/Genoscope, LABGeMEvry, France
| | - Steffen Kolb
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany.,Institute of Landscape Biogeochemistry-Leibniz Centre for Agricultural Landscape Research (ZALF)Müncheberg, Germany
| | - Stéphane Cruveiller
- UMR 8030 Centre National de la Recherche Scientifique-CEA, DSV/IG/Genoscope, LABGeMEvry, France
| | - Stéphane Vuilleumier
- Department of Molecular Genetics, Genomics, and Microbiology, UMR 7156 Université de Strasbourg (UNISTRA)-Centre National de la Recherche ScientifiqueStrasbourg, France
| | - Françoise Bringel
- Department of Molecular Genetics, Genomics, and Microbiology, UMR 7156 Université de Strasbourg (UNISTRA)-Centre National de la Recherche ScientifiqueStrasbourg, France
| |
Collapse
|
7
|
Lee W, Lee J. Selection of Medium Components by Plackett-Burman Design for Cell Growth of a Newly Isolated Methylobacterium sp. WJ4. KOREAN CHEMICAL ENGINEERING RESEARCH 2016. [DOI: 10.9713/kcer.2016.54.6.812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Nayak DD, Agashe D, Lee MC, Marx CJ. Selection Maintains Apparently Degenerate Metabolic Pathways due to Tradeoffs in Using Methylamine for Carbon versus Nitrogen. Curr Biol 2016; 26:1416-26. [PMID: 27212407 DOI: 10.1016/j.cub.2016.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 01/12/2023]
Abstract
Microorganisms often encode multiple non-orthologous metabolic modules that catalyze the same reaction. However, little experimental evidence actually demonstrates a selective basis for metabolic degeneracy. Many methylotrophs-microorganisms that grow on reduced single-carbon compounds-like Methylobacterium extorquens AM1 encode two routes for methylamine oxidation: the periplasmic methylamine dehydrogenase (MaDH) and the cytoplasmic N-methylglutamate (NMG) pathway. In Methylobacterium extorquens AM1, MaDH is essential for methylamine growth, but the NMG pathway has no known physiological role. Here, we use experimental evolution of two isolates lacking (or incapable of using) MaDH to uncover the physiological challenges that need to be overcome in order to use the NMG pathway for growth on methylamine as a carbon and energy source. Physiological characterization of the evolved isolates revealed regulatory rewiring to increase expression of the NMG pathway and novel mechanisms to mitigate cytoplasmic ammonia buildup. These adaptations led us to infer and validate environmental conditions under which the NMG pathway is advantageous compared to MaDH. The highly expressed MaDH enables rapid growth on high concentrations of methylamine as the primary carbon and energy substrate, whereas the energetically expensive NMG pathway plays a pivotal role during growth with methylamine as the sole nitrogen source, which we demonstrate is especially true under limiting concentrations (<1 mM). Tradeoffs between cellular localization and ammonium toxicity lead to selection for this apparent degeneracy as it is beneficial to facultative methylotrophs that have to switch between using methylamine as a carbon and energy source or just a nitrogen source.
Collapse
Affiliation(s)
- Dipti D Nayak
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Deepa Agashe
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ming-Chun Lee
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher J Marx
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA; Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|
9
|
Hu B, Yang YM, Beck DAC, Wang QW, Chen WJ, Yang J, Lidstrom ME, Yang S. Comprehensive molecular characterization of Methylobacterium extorquens AM1 adapted for 1-butanol tolerance. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:84. [PMID: 27069508 PMCID: PMC4827201 DOI: 10.1186/s13068-016-0497-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 03/25/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND The toxicity of alcohols is one of the major roadblocks of biological fermentation for biofuels production. Methylobacterium extorquens AM1, a facultative methylotrophic α-proteobacterium, has been engineered to generate 1-butanol from cheap carbon feedstocks through a synthetic metabolic pathway. However, M. extorquens AM1 is vulnerable to solvent stress, which impedes further development for 1-butanol production. Only a few studies have reported the general stress response of M. extorquens AM1 to solvent stress. Therefore, it is highly desirable to obtain a strain with ameliorated 1-butanol tolerance and elucidate the molecular mechanism of 1-butnaol tolerance in M. extorquens AM1 for future strain improvement. RESULTS In this work, adaptive laboratory evolution was used as a tool to isolate mutants with 1-butanol tolerance up to 0.5 %. The evolved strains, BHBT3 and BHBT5, demonstrated increased growth rates and higher survival rates with the existence of 1-butanol. Whole genome sequencing revealed a SNP mutation at kefB in BHBT5, which was confirmed to be responsible for increasing 1-butanol tolerance through an allelic exchange experiment. Global metabolomic analysis further discovered that the pools of multiple key metabolites, including fatty acids, amino acids, and disaccharides, were increased in BHBT5 in response to 1-butanol stress. Additionally, the carotenoid synthesis pathway was significantly down-regulated in BHBT5. CONCLUSIONS We successfully screened mutants resistant to 1-butanol and provided insights into the molecular mechanism of 1-butanol tolerance in M. extorquens AM1. This research will be useful for uncovering the mechanism of cellular response of M. extorquens AM1 to solvent stress, and will provide the genetic blueprint for the rational design of a strain of M. extorquens AM1 with increased 1-butanol tolerance in the future.
Collapse
Affiliation(s)
- Bo Hu
- />Department of Chemical Engineering, University of Washington, Seattle, WA USA
- />Industrial Product Division, Intrexon Corporation, South San Francisco, CA 94080 USA
| | - Yi-Ming Yang
- />School of Life Science, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province China
| | - David A. C. Beck
- />Department of Chemical Engineering, University of Washington, Seattle, WA USA
- />eScience Institute, University of Washington, Seattle, WA USA
| | - Qian-Wen Wang
- />Central Laboratory, Qingdao Agricultural University, Qingdao, Shandong Province China
| | - Wen-Jing Chen
- />School of Life Science, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province China
| | - Jing Yang
- />School of Life Science, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province China
| | - Mary E. Lidstrom
- />Department of Chemical Engineering, University of Washington, Seattle, WA USA
- />Department of Microbiology, University of Washington, Seattle, WA 98195-1750 USA
| | - Song Yang
- />School of Life Science, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province China
- />Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Rodríguez-Verdugo A, Tenaillon O, Gaut BS. First-Step Mutations during Adaptation Restore the Expression of Hundreds of Genes. Mol Biol Evol 2015; 33:25-39. [PMID: 26500250 PMCID: PMC4693981 DOI: 10.1093/molbev/msv228] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The temporal change of phenotypes during the adaptive process remains largely unexplored, as do the genetic changes that affect these phenotypic changes. Here we focused on three mutations that rose to high frequency in the early stages of adaptation within 12 Escherichia coli populations subjected to thermal stress (42 °C). All the mutations were in the rpoB gene, which encodes the RNA polymerase beta subunit. For each mutation, we measured the growth curves and gene expression (mRNAseq) of clones at 42 °C. We also compared growth and gene expression with their ancestor under unstressed (37 °C) and stressed conditions (42 °C). Each of the three mutations changed the expression of hundreds of genes and conferred large fitness advantages, apparently through the restoration of global gene expression from the stressed toward the prestressed state. These three mutations had a similar effect on gene expression as another single mutation in a distinct domain of the rpoB protein. Finally, we compared the phenotypic characteristics of one mutant, I572L, with two high-temperature adapted clones that have this mutation plus additional background mutations. The background mutations increased fitness, but they did not substantially change gene expression. We conclude that early mutations in a global transcriptional regulator cause extensive changes in gene expression, many of which are likely under positive selection for their effect in restoring the prestress physiology.
Collapse
Affiliation(s)
| | - Olivier Tenaillon
- INSERM, IAME, UMR 1137, Paris, France Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| |
Collapse
|