1
|
Mikucki A, Kahler CM. Microevolution and Its Impact on Hypervirulence, Antimicrobial Resistance, and Vaccine Escape in Neisseria meningitidis. Microorganisms 2023; 11:3005. [PMID: 38138149 PMCID: PMC10745880 DOI: 10.3390/microorganisms11123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neisseria meningitidis is commensal of the human pharynx and occasionally invades the host, causing the life-threatening illness invasive meningococcal disease. The meningococcus is a highly diverse and adaptable organism thanks to natural competence, a propensity for recombination, and a highly repetitive genome. These mechanisms together result in a high level of antigenic variation to invade diverse human hosts and evade their innate and adaptive immune responses. This review explores the ways in which this diversity contributes to the evolutionary history and population structure of the meningococcus, with a particular focus on microevolution. It examines studies on meningococcal microevolution in the context of within-host evolution and persistent carriage; microevolution in the context of meningococcal outbreaks and epidemics; and the potential of microevolution to contribute to antimicrobial resistance and vaccine escape. A persistent theme is the idea that the process of microevolution contributes to the development of new hyperinvasive meningococcal variants. As such, microevolution in this species has significant potential to drive future public health threats in the form of hypervirulent, antibiotic-resistant, vaccine-escape variants. The implications of this on current vaccination strategies are explored.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
2
|
Bertels F, Rainey PB. Ancient Darwinian replicators nested within eubacterial genomes. Bioessays 2023; 45:e2200085. [PMID: 36456469 DOI: 10.1002/bies.202200085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
Integrative mobile genetic elements (MGEs), such as transposons and insertion sequences, propagate within bacterial genomes, but persistence times in individual lineages are short. For long-term survival, MGEs must continuously invade new hosts by horizontal transfer. Theoretically, MGEs that persist for millions of years in single lineages, and are thus subject to vertical inheritance, should not exist. Here we draw attention to an exception - a class of MGE termed REPIN. REPINs are non-autonomous MGEs whose duplication depends on non-jumping RAYT transposases. Comparisons of REPINs and typical MGEs show that replication rates of REPINs are orders of magnitude lower, REPIN population size fluctuations correlate with changes in available genome space, REPIN conservation depends on RAYT function, and REPIN diversity accumulates within host lineages. These data lead to the hypothesis that REPINs form enduring, beneficial associations with eubacterial chromosomes. Given replicative nesting, our hypothesis predicts conflicts arising from the diverging effects of selection acting simultaneously on REPINs and host genomes. Evidence in support comes from patterns of REPIN abundance and diversity in two distantly related bacterial species. Together this bolsters the conclusion that REPINs are the genetic counterpart of mutualistic endosymbiotic bacteria.
Collapse
Affiliation(s)
- Frederic Bertels
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Paul B Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, Paris, France
| |
Collapse
|
3
|
Shaskolskiy B, Kravtsov D, Kandinov I, Dementieva E, Gryadunov D. Genomic Diversity and Chromosomal Rearrangements in Neisseria gonorrhoeae and Neisseria meningitidis. Int J Mol Sci 2022; 23:ijms232415644. [PMID: 36555284 PMCID: PMC9778887 DOI: 10.3390/ijms232415644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Chromosomal rearrangements in N. gonorrhoeae and N. meningitidis were studied with the determination of mobile elements and their role in rearrangements. The results of whole-genome sequencing and de novo genome assembly for 50 N. gonorrhoeae isolates collected in Russia were compared with 96 genomes of N. gonorrhoeae and 138 genomes of N. meningitidis from the databases. Rearrangement events with the determination of the coordinates of syntenic blocks were analyzed using the SibeliaZ software v.1.2.5, the minimum number of events that allow one genome to pass into another was calculated using the DCJ-indel model using the UniMoG program v.1.0. Population-level analysis revealed a stronger correlation between changes in the gene order and phylogenetic proximity for N. meningitidis in contrast to N. gonorrhoeae. Mobile elements were identified, including Correa elements; Spencer-Smith elements (in N. gonorrhoeae); Neisserial intergenic mosaic elements; IS elements of IS5, IS30, IS110, IS1595 groups; Nf1-Nf3 prophages; NgoФ1-NgoФ9 prophages; and Mu-like prophages Pnm1, Pnm2, MuMenB (in N. meningitidis). More than 44% of the observed rearrangements most likely occurred with the participation of mobile elements, including prophages. No differences were found between the Russian and global N. gonorrhoeae population both in terms of rearrangement events and in the number of transposable elements in genomes.
Collapse
|
4
|
McClure R, Genco CA. Strategies for Global RNA Sequencing of the Human Pathogen Neisseria gonorrhoeae. Methods Mol Biol 2019; 1997:163-183. [PMID: 31119624 DOI: 10.1007/978-1-4939-9496-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Over the last several years transcriptomic analysis of bacterial pathogens has become easier and less expensive. This technique is used to determine expression levels for all genes of a particular species or collection of species under a given condition, including genes that are not yet known to exist. While transcriptomics can be a powerful tool to better understand bacterial regulatory responses to specific host environments, the experimental approach and data analysis must be performed correctly to ensure robust, accurate, and translational results. Here, we describe experimental protocols related to transcriptomic analysis of the sexually transmitted disease pathogen Neisseria gonorrhoeae. Methods are described for the extraction of high-quality RNA, examination of RNA to ensure quality, the generation of cDNA libraries for sequencing and the downstream analysis of raw sequencing data to determine gene expression levels. Much of this work can be carried out with equipment and reagents that are readily available, and the methods can be performed by a majority of laboratory groups. RNA-seq and transcriptomic analyses are set to become even more common in the coming years. The protocols described here will provide a standardized set of methods for applying this powerful technique to the study of N. gonorrhoeae under a variety of conditions.
Collapse
Affiliation(s)
- Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Caroline A Genco
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
5
|
Wachter S, Raghavan R, Wachter J, Minnick MF. Identification of novel MITEs (miniature inverted-repeat transposable elements) in Coxiella burnetii: implications for protein and small RNA evolution. BMC Genomics 2018; 19:247. [PMID: 29642859 PMCID: PMC5896051 DOI: 10.1186/s12864-018-4608-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/16/2018] [Indexed: 01/05/2023] Open
Abstract
Background Coxiella burnetii is a Gram-negative gammaproteobacterium and zoonotic agent of Q fever. C. burnetii’s genome contains an abundance of pseudogenes and numerous selfish genetic elements. MITEs (miniature inverted-repeat transposable elements) are non-autonomous transposons that occur in all domains of life and are thought to be insertion sequences (ISs) that have lost their transposase function. Like most transposable elements (TEs), MITEs are thought to play an active role in evolution by altering gene function and expression through insertion and deletion activities. However, information regarding bacterial MITEs is limited. Results We describe two MITE families discovered during research on small non-coding RNAs (sRNAs) of C. burnetii. Two sRNAs, Cbsr3 and Cbsr13, were found to originate from a novel MITE family, termed QMITE1. Another sRNA, CbsR16, was found to originate from a separate and novel MITE family, termed QMITE2. Members of each family occur ~ 50 times within the strains evaluated. QMITE1 is a typical MITE of 300-400 bp with short (2-3 nt) direct repeats (DRs) of variable sequence and is often found overlapping annotated open reading frames (ORFs). Additionally, QMITE1 elements possess sigma-70 promoters and are transcriptionally active at several loci, potentially influencing expression of nearby genes. QMITE2 is smaller (150-190 bps), but has longer (7-11 nt) DRs of variable sequences and is mainly found in the 3′ untranslated region of annotated ORFs and intergenic regions. QMITE2 contains a GTAG repetitive extragenic palindrome (REP) that serves as a target for IS1111 TE insertion. Both QMITE1 and QMITE2 display inter-strain linkage and sequence conservation, suggesting that they are adaptive and existed before divergence of C. burnetii strains. Conclusions We have discovered two novel MITE families of C. burnetii. Our finding that MITEs serve as a source for sRNAs is novel. QMITE2 has a unique structure and occurs in large or small versions with unique DRs that display linkage and sequence conservation between strains, allowing for tracking of genomic rearrangements. QMITE1 and QMITE2 copies are hypothesized to influence expression of neighboring genes involved in DNA repair and virulence through transcriptional interference and ribonuclease processing. Electronic supplementary material The online version of this article (10.1186/s12864-018-4608-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shaun Wachter
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Rahul Raghavan
- Biology Department and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA
| | - Jenny Wachter
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th St, Hamilton, MT, USA
| | - Michael F Minnick
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT, USA.
| |
Collapse
|
6
|
Jackson LA, Day M, Allen J, Scott E, Dyer DW. Iron-regulated small RNA expression as Neisseria gonorrhoeae FA 1090 transitions into stationary phase growth. BMC Genomics 2017; 18:317. [PMID: 28431495 PMCID: PMC5399841 DOI: 10.1186/s12864-017-3684-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/06/2017] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND For most pathogens, iron (Fe) homeostasis is crucial for maintenance within the host and the ability to cause disease. The primary transcriptional regulator that controls intracellular Fe levels is the Fur (ferric uptake regulator) protein, which exerts its action on transcription by binding to a promoter-proximal sequence termed the Fur box. Fur-regulated transcriptional responses are often fine-tuned at the post-transcriptional level through the action of small regulatory RNAs (sRNAs). Consequently, identifying sRNAs contributing to the control of Fe homeostasis is important for understanding the Fur-controlled bacterial Fe-response network. RESULTS In this study, we sequenced size-selected directional libraries representing sRNA samples from Neisseria gonorrhoeae strain FA 1090, and examined the Fe- and temporal regulation of these sRNAs. RNA-seq data for all time points identified a pool of at least 340 potential sRNAs. Differential analysis demonstrated that expression appeared to be regulated by Fe availability for at least fifteen of these sRNAs. Fourteen sRNAs were induced in high Fe conditions, consisting of both cis and trans sRNAs, some of which are predicted to control expression of a known virulence factor, and one SAM riboswitch. An additional putative cis-acting sRNA was repressed by Fe availability. In the pathogenic Neisseria species, one sRNA that contributes to Fe-regulated post-transcriptional control is the Fur-repressible sRNA NrrF. The expression of five Fe-induced sRNAs appeared to be at least partially controlled by NrrF, while the remainder was expressed independently of NrrF. The expression of the 14 Fe-induced sRNAs also exhibited temporal control, as their expression levels increased dramatically as the bacteria entered stationary phase. CONCLUSIONS Here we report the temporal expression of Fe-regulated sRNAs in N. gonorrhoeae FA 1090 with several appearing to be controlled by the Fe-repressible sRNA NrrF. Temporal regulation of these sRNAs suggests a regulatory role in controlling functions necessary for survival, and may be important for phenotypes often associated with altered growth rates, such as biofilm formation or intracellular survival. Future functional studies will be needed to understand how these regulatory sRNAs contribute to gonococcal biology and pathogenesis.
Collapse
Affiliation(s)
- Lydgia A. Jackson
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, 975 NE 10th Street, Oklahoma City, OK 73104 USA
| | - Michael Day
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, 975 NE 10th Street, Oklahoma City, OK 73104 USA
| | - Jennie Allen
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, 975 NE 10th Street, Oklahoma City, OK 73104 USA
| | - Edgar Scott
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, 975 NE 10th Street, Oklahoma City, OK 73104 USA
| | - David W. Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, 975 NE 10th Street, Oklahoma City, OK 73104 USA
| |
Collapse
|
7
|
Elbeyioglu F, Roberts SB, Spencer-Smith R, Pulijala M, Zelewska MA, Nebel JC, Snyder LAS. Inversion of Correia repeat enclosed elements in Neisseria gonorrhoeae. Microbiology (Reading) 2017; 163:31-36. [DOI: 10.1099/mic.0.000394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Firat Elbeyioglu
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| | - Sabrina B. Roberts
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| | - Russell Spencer-Smith
- Present address: University of Illinois at Chicago, Chicago, IL, USA
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| | - Madhuri Pulijala
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| | - Marta A. Zelewska
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| | - Jean-Christophe Nebel
- School of Computer Science and Mathematics, Kingston University, Kingston upon Thames KT1 2EE, UK
| | - Lori A. S. Snyder
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|