1
|
Chowdhury T, Roy MC, Hossain FMA. Prevalence and Zoonotic Risk of Multidrug-Resistant Escherichia coli in Bovine Subclinical Mastitis Milk: Insights Into the Virulence and Antimicrobial Resistance. Food Sci Nutr 2025; 13:e4761. [PMID: 39816483 PMCID: PMC11733599 DOI: 10.1002/fsn3.4761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025] Open
Abstract
The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve E. coli, which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing E. coli (STEC) isolated from SCM milk. SCM-positive bovine milk was subjected to E. coli detection using cultural, biochemical, and molecular methods. Further, we detected STEC virulence genes including stx1, stx2, and eaeA. STEC isolates were tested for ARGs including blaSHV, CITM, tetA, and aac(3)-IV, and underwent antimicrobial susceptibility tests. Moreover, we performed a phylogenetic analysis of the stx1 gene of MDR-STEC. SCM was detected in 47.2% of milk samples of which 50.54% were E. coli positive. About 17.20% of E. coli isolates contained STEC virulence genes, and stx2 was the most prevalent. Moreover, all STEC isolates harbored at least one of the ARGs, while about 43.75% of the isolates carried multiple ARGs. Additionally, all the STEC isolates showed multidrug resistance, and were found to be fully resistant against amoxicillin, followed by ampicillin (87.50%) and gentamycin (75%); and were mostly sensitive to aztreonam (81.25%) and meropenem (68.75%). In phylogeny analysis, the stx1 gene of isolated MDR-STEC showed close relatedness with disease-causing non-O157 and O157 strains of different sources including cattle, humans, and food.
Collapse
Affiliation(s)
- Tonmoy Chowdhury
- Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical SciencesSylhet Agricultural UniversitySylhetBangladesh
| | - Mithu Chandra Roy
- Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical SciencesSylhet Agricultural UniversitySylhetBangladesh
| | - Ferdaus Mohd Altaf Hossain
- Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical SciencesSylhet Agricultural UniversitySylhetBangladesh
- Department of Microbial Biotechnology, Faculty of Biotechnology & Genetic EngineeringSylhet Agricultural UniversitySylhetBangladesh
| |
Collapse
|
2
|
Feng HJ, Chen L, Ding YC, Ma XJ, How SW, Wu D. Mechanism on the microbial salt tolerance enhancement by electrical stimulation. Bioelectrochemistry 2022; 147:108206. [PMID: 35868204 DOI: 10.1016/j.bioelechem.2022.108206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
Abstract
The application of biological methods in industrial saline wastewater treatment is limited, since the activities of microorganisms are strongly inhibited by the highly concentrated salts. Acclimatized halotolerant and halophilic microorganisms are of high importance since they can resist the environmental stresses of high salinity. The acclimation to salinity can be passive or active based on whether external simulation is used. However, there is a need for development of economic, efficient and reliable active biological stimulation technologies to accelerate salinity acclimation. Recent studies have shown that electrical stimulation can effectively enhance microbial salt tolerance and pollutant removal ability. However, there have been no comprehensive reviews of the mechanisms involved. Therefore, this mini-review described the mechanisms of electrical stimulation that can significantly improve microbial bioactivity and biodiversity. These mechanisms include regulation of Na+ and K+ transporters by changing membranepotential and promoting ATP production, as well as regulation of extracellular polymer substances through enhanced release of low molecular weight EPS and quorum sensing molecules. The information provided herein will facilitate the application of biological high-salinity wastewater treatment.
Collapse
Affiliation(s)
- Hua-Jun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Long Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Yang-Cheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China.
| | - Xiang-Juan Ma
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Seow-Wah How
- Faculty of Bioengineering, Ghent University, Ghent 9000, Belgium
| | - Di Wu
- Faculty of Bioengineering, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
3
|
Syed Z, Sogani M, Dongre A, Kumar A, Sonu K, Sharma G, Gupta AB. Bioelectrochemical systems for environmental remediation of estrogens: A review and way forward. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146544. [PMID: 33770608 DOI: 10.1016/j.scitotenv.2021.146544] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Globally estrogenic pollutants are a cause of concern in wastewaters and water bodies because of their high endocrine disrupting activity leading to extremely negative impacts on humans and other organisms even at very low environmental concentrations. Bioremediation of estrogens has been studied extensively and one technology that has emerged with its promising capabilities is Bioelectrochemical Systems (BESs). Several studies in the past have investigated BESs applications for treatment of wastewaters containing toxic recalcitrant pollutants with a primary focus on improvement of performance of these systems for their deployment in real field applications. But the information is scattered and further the improvements are difficult to achieve for standalone BESs. This review critically examines the various existing treatment technologies for the effective estrogen degradation. The major focus of this paper is on the technological advancements for scaling up of these BESs for the real field applications along with their integration with the existing and conventional wastewater treatment systems. A detailed discussion on few selected microbial species having the unusual properties of heterotrophic nitrification and extraordinary stress response ability to toxic compounds and their degradation has been highlighted. Based on the in-depth study and analysis of BESs, microbes and possible benefits of various treatment methods for estrogen removal, we have proposed a sustainable Hybrid BES-centered treatment system for this purpose as a choice for wastewater treatment. We have also identified three pipeline tasks that reflect the vital parts of the life cycle of drugs and integrated treatment unit, as a way forward to foster bioeconomy along with an approach for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Zainab Syed
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Monika Sogani
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India.
| | - Aman Dongre
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Anu Kumar
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), L&W, Waite Campus, Urrbrae, SA, 5064, Australia.
| | - Kumar Sonu
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Gopesh Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
| |
Collapse
|
4
|
Gupta D, Mohammed M, Mekala LP, Chintalapati S, Chintalapati VR. iTRAQ-based quantitative proteomics reveals insights into metabolic and molecular responses of glucose-grown cells of Rubrivivax benzoatilyticus JA2. J Proteomics 2018; 194:49-59. [PMID: 30597313 DOI: 10.1016/j.jprot.2018.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 01/28/2023]
Abstract
Anoxygenic photosynthetic bacteria thrive under diverse habitats utilising an extended range of inorganic/organic compounds under different growth modes. Although they display incredible metabolic flexibility, their responses and adaptations to changing carbon regimes is largely unexplored. In the present study, we employed iTRAQ-based global proteomic profiling and physiological studies to uncover the adaptive strategies of a phototrophic bacterium, Rubrivivax benzoatilyticus JA2 to glucose. Strain JA2 displayed altered growth rates, reduced cell size and progressive loss of pigmentation when grown on glucose compared to malate under photoheterotrophic condition. A ten-fold increase in the saturated to unsaturated fatty acid ratio of glucose-grown cells indicates a possible membrane adaptation. Proteomic profiling revealed extensive metabolic remodelling in the glucose-grown cells wherein signal-transduction, selective-transcription, DNA-repair, transport and protein quality control processes were up-regulated to cope with the changing milieu. Proteins involved in DNA replication, translation, electron-transport, photosynthetic machinery were down-regulated possibly to conserve the energy. Glycolysis/gluconeogenesis, TCA cycle and pigment biosynthesis were also down-regulated. The cell has activated alternative energy metabolic pathways viz., fatty acid β-oxidation, glyoxylate, acetate-switch and Entner-Doudoroff pathways. Overall, the present study deciphered the molecular/metabolic events associated with glucose-grown cells of strain JA2 and also unraveled how a carbon source modulates the metabolic phenotypes. SIGNIFICANCE: Anoxygenic photosynthetic bacteria (APB) exhibit incredible metabolic flexibility leading to diverse phenotypes. They thrive under diverse habitat using an array of inorganic/organic compounds as carbon sources, yet their metabolic adaptation to varying carbon regime is mostly unexplored. Present study uncovered the proteomic insights of the cellular responses of strain JA2 to changing carbon sources viz. malate and glucose under photoheterotrophic conditions. Our study suggests that carbon source can also determine the metabolic fate of the cells and reshape the energy dynamics of APB. Here, for the first time study highlighted the plausible carbon source (glucose) mediated regulation of photosynthesis in APB. The study sheds light on the plausible cellular events and adaptive metabolic strategies employed by strain JA2 in presence of non-preferred carbon source. It also revealed new insights into the metabolic plasticity of APB to the changing milieu.
Collapse
Affiliation(s)
- Deepshikha Gupta
- Department of Plant Sciences, P.O. Central University, University of Hyderabad, Hyderabad 500046, India
| | - Mujahid Mohammed
- Department of Plant Sciences, P.O. Central University, University of Hyderabad, Hyderabad 500046, India
| | - Lakshmi Prasuna Mekala
- Department of Plant Sciences, P.O. Central University, University of Hyderabad, Hyderabad 500046, India
| | - Sasikala Chintalapati
- Bacterial Discovery Laboratory, Centre for Environment, IST, JNT University Hyderabad, Kukatpally, Hyderabad 500085, India
| | | |
Collapse
|
5
|
Stingl U. Special Issue: Response of Microbial Communities to Environmental Changes. Microorganisms 2018; 6:microorganisms6020029. [PMID: 29601519 PMCID: PMC6026936 DOI: 10.3390/microorganisms6020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 03/21/2018] [Accepted: 03/28/2018] [Indexed: 11/16/2022] Open
Affiliation(s)
- Ulrich Stingl
- UF/IFAS Fort Lauderdale Research & Education Center, Department of Microbiology & Cell Science, University of Florida, Davie, FL 33314, USA.
| |
Collapse
|