1
|
Giner-Llorca M, Gallego del Sol F, Marcos JF, Marina A, Manzanares P. Rationally designed antifungal protein chimeras reveal new insights into structure-activity relationship. Int J Biol Macromol 2023; 225:135-148. [PMID: 36460243 DOI: 10.1016/j.ijbiomac.2022.11.280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Antifungal proteins (AFPs) are promising antimicrobial compounds that represent a feasible alternative to fungicides. Penicillium expansum encodes three phylogenetically distinct AFPs (PeAfpA, PeAfpB and PeAfpC) which show different antifungal profiles and fruit protection effects. To gain knowledge about the structural determinants governing their activity, we solved the crystal structure of PeAfpB and rationally designed five PeAfpA::PeAfpB chimeras (chPeAFPV1-V5). Chimeras showed significant differences in their antifungal activity. chPeAFPV1 and chPeAFPV2 improved the parental PeAfpB potency, and it was very similar to that of PeAfpA. chPeAFPV4 and chPeAFPV5 showed an intermediate profile of activity compared to the parental proteins while chPeAFPV3 was inactive towards most of the fungi tested. Structural analysis of the chimeras evidenced an identical scaffold to PeAfpB, suggesting that the differences in activity are due to the contributions of specific residues and not to induced conformational changes or structural rearrangements. Results suggest that mannoproteins determine protein interaction with the cell wall and its antifungal activity while there is not a direct correlation between binding to membrane phospholipids and activity. This work provides new insights about the relevance of sequence motifs and the feasibility of modifying protein specificity, opening the door to the rational design of chimeras with biotechnological applicability.
Collapse
Affiliation(s)
- Moisés Giner-Llorca
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain
| | - Francisca Gallego del Sol
- Instituto de Biomedicina de Valencia (IBV), CSIC and CIBER de Enfermedades Raras (CIBERER), Jaume Roig 11, 46010, Valencia, Spain
| | - Jose F Marcos
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV), CSIC and CIBER de Enfermedades Raras (CIBERER), Jaume Roig 11, 46010, Valencia, Spain.
| | - Paloma Manzanares
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
2
|
Gandía M, Moreno‐Giménez E, Giner‐Llorca M, Garrigues S, Ropero‐Pérez C, Locascio A, Martínez‐Culebras PV, Marcos JF, Manzanares P. Development of a FungalBraid Penicillium expansum-based expression system for the production of antifungal proteins in fungal biofactories. Microb Biotechnol 2022; 15:630-647. [PMID: 35084102 PMCID: PMC8867986 DOI: 10.1111/1751-7915.14006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/10/2022] [Indexed: 12/03/2022] Open
Abstract
Fungal antifungal proteins (AFPs) have attracted attention as novel biofungicides. Their exploitation requires safe and cost-effective producing biofactories. Previously, Penicillium chrysogenum and Penicillium digitatum produced recombinant AFPs with the use of a P. chrysogenum-based expression system that consisted of the paf gene promoter, signal peptide (SP)-pro sequence and terminator. Here, the regulatory elements of the afpA gene encoding the highly produced PeAfpA from Penicillium expansum were developed as an expression system for AFP production through the FungalBraid platform. The afpA cassette was tested to produce PeAfpA and P. digitatum PdAfpB in P. chrysogenum and P. digitatum, and its efficiency was compared to that of the paf cassette. Recombinant PeAfpA production was only achieved using the afpA cassette, being P. chrysogenum a more efficient biofactory than P. digitatum. Conversely, P. chrysogenum only produced PdAfpB under the control of the paf cassette. In P. digitatum, both expression systems allowed PdAfpB production, with the paf cassette resulting in higher protein yields. Interestingly, these results did not correlate with the performance of both promoters in a luciferase reporter system. In conclusion, AFP production is a complex outcome that depends on the regulatory sequences driving afp expression, the fungal biofactory and the AFP sequence.
Collapse
Affiliation(s)
- Mónica Gandía
- Food Biotechnology DepartmentConsejo Superior de Investigaciones Científicas (CSIC)Instituto de Agroquímica y Tecnología de Alimentos (IATA)Catedrático Agustín Escardino Benlloch 7Paterna, Valencia46980Spain
- Present address:
Departamento de Medicina Preventiva y Salud PúblicaCiencias de la Alimentación, Bromatología, Toxicología y Medicina LegalUniversitat de ValènciaVicente Andrés Estellés s/nValencia46100Spain
| | - Elena Moreno‐Giménez
- Food Biotechnology DepartmentConsejo Superior de Investigaciones Científicas (CSIC)Instituto de Agroquímica y Tecnología de Alimentos (IATA)Catedrático Agustín Escardino Benlloch 7Paterna, Valencia46980Spain
- Consejo Superior de Investigaciones Científicas (CSIC)Instituto de Biología Molecular y Celular de Plantas (IBMCP)Universidad Politécnica de ValenciaValenciaSpain
| | - Moisés Giner‐Llorca
- Food Biotechnology DepartmentConsejo Superior de Investigaciones Científicas (CSIC)Instituto de Agroquímica y Tecnología de Alimentos (IATA)Catedrático Agustín Escardino Benlloch 7Paterna, Valencia46980Spain
| | - Sandra Garrigues
- Food Biotechnology DepartmentConsejo Superior de Investigaciones Científicas (CSIC)Instituto de Agroquímica y Tecnología de Alimentos (IATA)Catedrático Agustín Escardino Benlloch 7Paterna, Valencia46980Spain
| | - Carolina Ropero‐Pérez
- Food Biotechnology DepartmentConsejo Superior de Investigaciones Científicas (CSIC)Instituto de Agroquímica y Tecnología de Alimentos (IATA)Catedrático Agustín Escardino Benlloch 7Paterna, Valencia46980Spain
| | - Antonella Locascio
- Food Biotechnology DepartmentConsejo Superior de Investigaciones Científicas (CSIC)Instituto de Agroquímica y Tecnología de Alimentos (IATA)Catedrático Agustín Escardino Benlloch 7Paterna, Valencia46980Spain
| | - Pedro V. Martínez‐Culebras
- Food Biotechnology DepartmentConsejo Superior de Investigaciones Científicas (CSIC)Instituto de Agroquímica y Tecnología de Alimentos (IATA)Catedrático Agustín Escardino Benlloch 7Paterna, Valencia46980Spain
- Departamento de Medicina Preventiva y Salud PúblicaCiencias de la Alimentación, Bromatología, Toxicología y Medicina LegalUniversitat de ValènciaVicente Andrés Estellés s/nValencia46100Spain
| | - Jose F. Marcos
- Food Biotechnology DepartmentConsejo Superior de Investigaciones Científicas (CSIC)Instituto de Agroquímica y Tecnología de Alimentos (IATA)Catedrático Agustín Escardino Benlloch 7Paterna, Valencia46980Spain
| | - Paloma Manzanares
- Food Biotechnology DepartmentConsejo Superior de Investigaciones Científicas (CSIC)Instituto de Agroquímica y Tecnología de Alimentos (IATA)Catedrático Agustín Escardino Benlloch 7Paterna, Valencia46980Spain
| |
Collapse
|
3
|
Strauss G, Koria P. Hybrid fusion protein as a dual protease inhibitor for the healing of chronic wounds. Biotechnol Prog 2021; 37:e3209. [PMID: 34486249 DOI: 10.1002/btpr.3209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/07/2022]
Abstract
Diseases bring about the need for interventions that pinpoint each specific aspect of the illness. Commonly, remission of a complex disease is accomplished by mixing treatments, medications, and therapeutics together in a fashion where they may negatively interact with each other or never arrive at the diseased site as a systemic heterogeneous mixture. Chronic wounds display intricacy as they are very localized and have their own environment where tissue deconstruction due to high levels of numerous proteases outweighs normal tissue reconstruction. This idea leads to the necessity of a protein that contains low diffusivity rates for localized treatment, strength against high concentrations of proteolytic species that lead to degradation of short chain peptides, while encompassing broad inhibitory effects against multiple proteases. Elastin-like peptides are an attractive, thermoresponsive, protein-based drug delivery partner as they contain low diffusivity and serve as a stable architecture for short chain peptide fusion. In this project, a novel elastin-like peptide-based protein has been created to target the inhibition of both human neutrophil elastase and matrix metalloprotease-2. As a biologic, this is unique as it is a protein with specific biological activities against multiple proteases, ultimately displaying the potential to mix and match differing biologically active peptides within one amino acid sequence.
Collapse
Affiliation(s)
- Graham Strauss
- Department of Chemical, Biological & Materials Engineering, University of South Florida, Tampa, Florida, USA
| | - Piyush Koria
- Department of Chemical, Biological & Materials Engineering, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
4
|
Díaz MA, Pereyra MM, Santander FFS, Perez MF, Córdoba JM, Alhussein M, Karlovsky P, Dib JR. Protection of Citrus Fruits from Postharvest Infection with Penicillium digitatum and Degradation of Patulin by Biocontrol Yeast Clavispora lusitaniae 146. Microorganisms 2020; 8:E1477. [PMID: 32993018 PMCID: PMC7601000 DOI: 10.3390/microorganisms8101477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/31/2023] Open
Abstract
Fungal rots are one of the main causes of large economic losses and deterioration in the quality and nutrient composition of fruits during the postharvest stage. The yeast Clavispora lusitaniae 146 has previously been shown to efficiently protect lemons from green mold caused by Penicillium digitatum. In this work, the effect of yeast concentration and exposure time on biocontrol efficiency was assessed; the protection of various citrus fruits against P. digitatum by C. lusitaniae 146 was evaluated; the ability of strain 146 to degrade mycotoxin patulin was tested; and the effect of the treatment on the sensory properties of fruits was determined. An efficient protection of lemons was achieved after minimum exposure to a relatively low yeast cell concentration. Apart from lemons, the yeast prevented green mold in grapefruits, mandarins, oranges, and tangerines, implying that it can be used as a broad-range biocontrol agent in citrus. The ability to degrade patulin indicated that strain 146 may be suitable for the control of further Penicillium species. Yeast treatment did not alter the sensory perception of the aroma of fruits. These results corroborate the potential of C. lusitaniae 146 for the control of postharvest diseases of citrus fruits and indicate its suitability for industrial-scale fruit processing.
Collapse
Affiliation(s)
- Mariana Andrea Díaz
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; (M.A.D.); (M.M.P.); (F.F.S.S.); (M.F.P.); (J.M.C.)
| | - Martina María Pereyra
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; (M.A.D.); (M.M.P.); (F.F.S.S.); (M.F.P.); (J.M.C.)
| | - Fabricio Fabián Soliz Santander
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; (M.A.D.); (M.M.P.); (F.F.S.S.); (M.F.P.); (J.M.C.)
| | - María Florencia Perez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; (M.A.D.); (M.M.P.); (F.F.S.S.); (M.F.P.); (J.M.C.)
| | - Josefina María Córdoba
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; (M.A.D.); (M.M.P.); (F.F.S.S.); (M.F.P.); (J.M.C.)
| | - Mohammad Alhussein
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, D-37077 Göttingen, Germany;
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, D-37077 Göttingen, Germany;
| | - Julián Rafael Dib
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; (M.A.D.); (M.M.P.); (F.F.S.S.); (M.F.P.); (J.M.C.)
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 Tucumán, Argentina
| |
Collapse
|
5
|
Holzknecht J, Kühbacher A, Papp C, Farkas A, Váradi G, Marcos JF, Manzanares P, Tóth GK, Galgóczy L, Marx F. The Penicillium chrysogenum Q176 Antimicrobial Protein PAFC Effectively Inhibits the Growth of the Opportunistic Human Pathogen Candida albicans. J Fungi (Basel) 2020; 6:141. [PMID: 32824977 PMCID: PMC7557831 DOI: 10.3390/jof6030141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Small, cysteine-rich and cationic antimicrobial proteins (AMPs) from filamentous ascomycetes promise treatment alternatives to licensed antifungal drugs. In this study, we characterized the Penicillium chrysogenum Q176 antifungal protein C (PAFC), which is phylogenetically distinct to the other two Penicillium antifungal proteins, PAF and PAFB, that are expressed by this biotechnologically important ascomycete. PAFC is secreted into the culture broth and is co-expressed with PAF and PAFB in the exudates of surface cultures. This observation is in line with the suggested role of AMPs in the adaptive response of the host to endogenous and/or environmental stimuli. The in silico structural model predicted five β-strands stabilized by four intramolecular disulfide bonds in PAFC. The functional characterization of recombinant PAFC provided evidence for a promising new molecule in anti-Candida therapy. The thermotolerant PAFC killed planktonic cells and reduced the metabolic activity of sessile cells in pre-established biofilms of two Candidaalbicans strains, one of which was a fluconazole-resistant clinical isolate showing higher PAFC sensitivity than the fluconazole-sensitive strain. Candidacidal activity was linked to severe cell morphology changes, PAFC internalization, induction of intracellular reactive oxygen species and plasma membrane disintegration. The lack of hemolytic activity further corroborates the potential applicability of PAFC in clinical therapy.
Collapse
Affiliation(s)
- Jeanett Holzknecht
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria; (J.H.); (A.K.)
| | - Alexander Kühbacher
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria; (J.H.); (A.K.)
| | - Csaba Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary;
| | - Attila Farkas
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Györgyi Váradi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (G.V.); (G.K.T.)
| | - Jose F. Marcos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, E-46980 Valencia, Spain; (J.F.M.); (P.M.)
| | - Paloma Manzanares
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, E-46980 Valencia, Spain; (J.F.M.); (P.M.)
| | - Gábor K. Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (G.V.); (G.K.T.)
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm tér 8, H-6726 Szeged, Hungary
| | - László Galgóczy
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria; (J.H.); (A.K.)
| |
Collapse
|
6
|
Huber A, Galgóczy L, Váradi G, Holzknecht J, Kakar A, Malanovic N, Leber R, Koch J, Keller MA, Batta G, Tóth GK, Marx F. Two small, cysteine-rich and cationic antifungal proteins from Penicillium chrysogenum: A comparative study of PAF and PAFB. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183246. [PMID: 32142818 PMCID: PMC7138148 DOI: 10.1016/j.bbamem.2020.183246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
The filamentous fungus Penicillium chrysogenum Q176 secretes the antimicrobial proteins (AMPs) PAF and PAFB, which share a compact disulfide-bond mediated, β-fold structure rendering them highly stable. These two AMPs effectively inhibit the growth of human pathogenic fungi in micromolar concentrations and exhibit antiviral potential without causing cytotoxic effects on mammalian cells in vitro and in vivo. The antifungal mechanism of action of both AMPs is closely linked to - but not solely dependent on - the lipid composition of the fungal cell membrane and requires a strictly regulated protein uptake into the cell, indicating that PAF and PAFB are not canonical membrane active proteins. Variations in their antifungal spectrum and their killing dynamics point towards a divergent mode of action related to their physicochemical properties and surface charge distribution. In this review, we relate characteristic features of PAF and PAFB to the current knowledge about other AMPs of different sources. In addition, we present original data that have never been published before to substantiate our assumptions and provide evidences that help to explain and understand better the mechanistic function of PAF and PAFB. Finally, we underline the promising potential of PAF and PAFB as future antifungal therapeutics.
Collapse
Affiliation(s)
- A Huber
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - L Galgóczy
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary; Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - G Váradi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - J Holzknecht
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - A Kakar
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - N Malanovic
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Graz, Austria
| | - R Leber
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Graz, Austria
| | - J Koch
- Institute of Human Genetics, Medical University of Innsbruck, Austria
| | - M A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Austria
| | - G Batta
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - G K Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; MTA-SZTE Biomimetic Systems Research Group, University of Szeged, 6720 Szeged, Hungary
| | - F Marx
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
7
|
Galgóczy L, Marx F. Do Antimicrobial Proteins Contribute to Overcoming the Hidden Antifungal Crisis at the Dawn of a Post-Antibiotic Era? Microorganisms 2019; 7:16. [PMID: 30641886 PMCID: PMC6352135 DOI: 10.3390/microorganisms7010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
The incidence of fungal infections has been grossly underestimated in the past decades as a consequence of poor identification techniques and a lack of regular epidemiologic surveys in low- and middle-income countries [...].
Collapse
Affiliation(s)
- László Galgóczy
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Florentine Marx
- Biocenter, Division of Molecular Biology, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|