1
|
Willetts A. The Role of Dioxygen in Microbial Bio-Oxygenation: Challenging Biochemistry, Illustrated by a Short History of a Long Misunderstood Enzyme. Microorganisms 2024; 12:389. [PMID: 38399793 PMCID: PMC10891995 DOI: 10.3390/microorganisms12020389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
A Special Issue of Microorganisms devoted to 'Microbial Biocatalysis and Biodegradation' would be incomplete without some form of acknowledgement of the many important roles that dioxygen-dependent enzymes (principally mono- and dioxygenases) play in relevant aspects of bio-oxygenation. This is reflected by the multiple strategic roles that dioxygen -dependent microbial enzymes play both in generating valuable synthons for chemoenzymatic synthesis and in facilitating reactions that help to drive the global geochemical carbon cycle. A useful insight into this can be gained by reviewing the evolution of the current status of 2,5-diketocamphane 1,2-monooxygenase (EC 1.14.14.108) from (+)-camphor-grown Pseudomonas putida ATCC 17453, the key enzyme that promotes the initial ring cleavage of this natural bicyclic terpene. Over the last sixty years, the perceived nature of this monooxygenase has transmogrified significantly. Commencing in the 1960s, extensive initial studies consistently reported that the enzyme was a monomeric true flavoprotein dependent on both FMNH2 and nonheme iron as bound cofactors. However, over the last decade, all those criteria have changed absolutely, and the enzyme is currently acknowledged to be a metal ion-independent homodimeric flavin-dependent two-component mono-oxygenase deploying FMNH2 as a cosubstrate. That transition is a paradigm of the ever evolving nature of scientific knowledge.
Collapse
Affiliation(s)
- Andrew Willetts
- 4 Sv Ivan, 21400 Sutivan, Croatia;
- Curnow Consultancies, Helston TR13 9PQ, UK
| |
Collapse
|
2
|
Willetts A. Inter-Species Redox Coupling by Flavin Reductases and FMN-Dependent Two-Component Monooxygenases Undertaking Nucleophilic Baeyer-Villiger Biooxygenations. Microorganisms 2022; 11:microorganisms11010071. [PMID: 36677363 PMCID: PMC9864536 DOI: 10.3390/microorganisms11010071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Using highly purified enzyme preparations throughout, initial kinetic studies demonstrated that the isoenzymic 2,5- and 3,6-diketocamphane mono-oxygenases from Pseudomonas putida ATCC 17453 and the LuxAB luciferase from Vibrio fischeri ATCC 7744 exhibit commonality in being FMN-dependent two-component monooxygenases that promote redox coupling by the transfer of flavin reductase-generated FMNH2 by rapid free diffusion. Subsequent studies confirmed the comprehensive inter-species compatibility of both native and non-native flavin reductases with each of the tested monooxygenases. For all three monooxygenases, non-native flavin reductases from Escherichia coli ATCC 11105 and Aminobacter aminovorans ATCC 29600 were confirmed to be more efficient donators of FMNH2 than the corresponding tested native flavin reductases. Some potential practical implications of these outcomes are considered for optimising FMNH2-dependent biooxygenations of recognised practical and commercial value.
Collapse
|
3
|
Röllig R, Paul CE, Duquesne K, Kara S, Alphand V. Exploring the Temperature Effect on Enantioselectivity of a Baeyer-Villiger Biooxidation by the 2,5-DKCMO Module: The SLM Approach. Chembiochem 2022; 23:e202200293. [PMID: 35648642 PMCID: PMC9400988 DOI: 10.1002/cbic.202200293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/08/2022]
Abstract
Temperature is a crucial parameter for biological and chemical processes. Its effect on enzymatically catalysed reactions has been known for decades, and stereo- and enantiopreference are often temperature-dependent. For the first time, we present the temperature effect on the Baeyer-Villiger oxidation of rac-bicyclo[3.2.0]hept-2-en-6-one by the type II Bayer-Villiger monooxygenase, 2,5-DKCMO. In the absence of a reductase and driven by the hydride-donation of a synthetic nicotinamide analogue, the clear trend for a decreasing enantioselectivity at higher temperatures was observed. "Traditional" approaches such as the determination of the enantiomeric ratio (E) appeared unsuitable due to the complexity of the system. To quantify the trend, we chose to use the 'Shape Language Modelling' (SLM), a tool that allows the reaction to be described at all points in a shape prescriptive manner. Thus, without knowing the equation of the reaction, the substrate ee can be estimated that at any conversion.
Collapse
Affiliation(s)
- Robert Röllig
- Aix-Marseille UnivCNRSCentrale MarseilleiSm2 UMR CMRS 7313Aix-Marseille UniversitéPôle de l'Etoile Avenue Escadrille Normandie Niemen13397MarseilleFrance
- Biocatalysis and Bioprocessing GroupDepartment of Biological and Chemical EngineeringAarhus UniversityGustav Wieds Vej 10Aarhus8000 Aarhus CDenmark
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 9Delft2629 HZThe Netherlands
| | - Katia Duquesne
- Aix-Marseille UnivCNRSCentrale MarseilleiSm2 UMR CMRS 7313Aix-Marseille UniversitéPôle de l'Etoile Avenue Escadrille Normandie Niemen13397MarseilleFrance
| | - Selin Kara
- Biocatalysis and Bioprocessing GroupDepartment of Biological and Chemical EngineeringAarhus UniversityGustav Wieds Vej 10Aarhus8000 Aarhus CDenmark
| | - Véronique Alphand
- Aix-Marseille UnivCNRSCentrale MarseilleiSm2 UMR CMRS 7313Aix-Marseille UniversitéPôle de l'Etoile Avenue Escadrille Normandie Niemen13397MarseilleFrance
| |
Collapse
|
4
|
The Isoenzymic Diketocamphane Monooxygenases of Pseudomonas putida ATCC 17453-An Episodic History and Still Mysterious after 60 Years. Microorganisms 2021; 9:microorganisms9122593. [PMID: 34946195 PMCID: PMC8706424 DOI: 10.3390/microorganisms9122593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Researching the involvement of molecular oxygen in the degradation of the naturally occurring bicyclic terpene camphor has generated a six-decade history of fascinating monooxygenase biochemistry. While an extensive bibliography exists reporting the many varied studies on camphor 5-monooxygenase, the initiating enzyme of the relevant catabolic pathway in Pseudomonas putida ATCC 17453, the equivalent recorded history of the isoenzymic diketocamphane monooxygenases, the enzymes that facilitate the initial ring cleavage of the bicyclic terpene, is both less extensive and more enigmatic. First referred to as ‘ketolactonase—an enzyme for cyclic lactonization’—the enzyme now classified as 2,5-diketocamphane 1,2-monooxygenase (EC 1.14.14.108) holds a special place in the history of oxygen-dependent biochemistry, being the first biocatalyst confirmed to undertake a biooxygenation reaction equivalent to the peracid-catalysed Baeyer–Villiger chemical oxidation first reported in the late 19th century. However, following that auspicious beginning, the biochemistry of EC 1.14.14.108, and its isoenzymic partner 3,6-diketocamphane 1,6-monooxygenase (EC 1.14.14.155) was dogged for many years by the mistaken belief that the enzymes were true flavoproteins that function with a tightly-bound flavin cofactor in the active site. This misconception led to a number of erroneous interpretations of relevant experimental data. It is only in the last decade, initially as the result of pure serendipity, that these enzymes have been confirmed to be members of a relatively recently discovered class of oxygen-dependent enzymes, the flavin-dependent two-component monooxygenases. This has promoted a renaissance of interest in the enzymes, resulting in programmes of research that have significantly expanded current knowledge of both their mode of action and regulation in camphor-grown P. putida ATCC 17453. However, some features of the biochemistry of the isoenzymic diketocamphane monooxygenases remain currently unexplained. It is the episodic history of these enzymes and some of what remains unresolved that are the principal subjects of this review.
Collapse
|
5
|
Paul CE, Eggerichs D, Westphal AH, Tischler D, van Berkel WJH. Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnol Adv 2021; 51:107712. [PMID: 33588053 DOI: 10.1016/j.biotechadv.2021.107712] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Flavoprotein monooxygenases (FPMOs) are single- or two-component enzymes that catalyze a diverse set of chemo-, regio- and enantioselective oxyfunctionalization reactions. In this review, we describe how FPMOs have evolved from model enzymes in mechanistic flavoprotein research to biotechnologically relevant catalysts that can be applied for the sustainable production of valuable chemicals. After a historical account of the development of the FPMO field, we explain the FPMO classification system, which is primarily based on protein structural properties and electron donor specificities. We then summarize the most appealing reactions catalyzed by each group with a focus on the different types of oxygenation chemistries. Wherever relevant, we report engineering strategies that have been used to improve the robustness and applicability of FPMOs.
Collapse
Affiliation(s)
- Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Daniel Eggerichs
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
6
|
Röllig R, Paul CE, Claeys-Bruno M, Duquesne K, Kara S, Alphand V. Divorce in the two-component BVMO family: the single oxygenase for enantioselective chemo-enzymatic Baeyer-Villiger oxidations. Org Biomol Chem 2021; 19:3441-3450. [PMID: 33899864 DOI: 10.1039/d1ob00015b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two-component flavoprotein monooxygenases consist of a reductase and an oxygenase enzyme. The proof of functionality of the latter without its counterpart as well as the mechanism of flavin transfer remains unanswered beyond doubt. To tackle this question, we utilized a reductase-free reaction system applying purified 2,5-diketocamphane-monooxygenase I (2,5-DKCMO), a FMN-dependent type II Baeyer-Villiger monooxygenase, and synthetic nicotinamide analogues (NCBs) as dihydropyridine derivatives for FMN reduction. This system demonstrated the stand-alone quality of the oxygenase, as well as the mechanism of FMNH2 transport by free diffusion. The efficiency of this reductase-free system strongly relies on the balance of FMN reduction and enzymatic (re)oxidation, since reduced FMN in solution causes undesired side reactions, such as hydrogen peroxide formation. Design of experiments allowed us to (i) investigate the effect of various reaction parameters, underlining the importance to balance the FMN/FMNH2 cycle, (ii) optimize the reaction system for the enzymatic Baeyer-Villiger oxidation of rac-bicyclo[3.2.0]hept-2-en-6-one, rac-camphor, and rac-norcamphor. Finally, this study not only demonstrates the reductase-independence of 2,5-DKCMO, but also revisits the terminology of two-component flavoprotein monooxygenases for this specific case.
Collapse
Affiliation(s)
- Robert Röllig
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, Marseille, France. and Aarhus University, Denmark
| | | | | | - Katia Duquesne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, Marseille, France.
| | | | - Véronique Alphand
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, Marseille, France.
| |
Collapse
|
7
|
Schmidt S, Bornscheuer UT. Baeyer-Villiger monooxygenases: From protein engineering to biocatalytic applications. FLAVIN-DEPENDENT ENZYMES: MECHANISMS, STRUCTURES AND APPLICATIONS 2020; 47:231-281. [DOI: 10.1016/bs.enz.2020.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Fürst MJLJ, Gran-Scheuch A, Aalbers FS, Fraaije MW. Baeyer–Villiger Monooxygenases: Tunable Oxidative Biocatalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03396] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maximilian J. L. J. Fürst
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Alejandro Gran-Scheuch
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Friso S. Aalbers
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| |
Collapse
|
9
|
Willetts A. Conferring the Metabolic Self-Sufficiency of the CAM Plasmid of Pseudomonas putida ATCC 17453: The Key Role of Putidaredoxin Reductase. Microorganisms 2019; 7:E395. [PMID: 31561477 PMCID: PMC6843404 DOI: 10.3390/microorganisms7100395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/08/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
The relative importance of camphor (CAM) plasmid-coded putidaredoxin reductase (PdR) and the chromosome-coded flavin reductases Frp1, Frp2 and Fred for supplying reduced FMN (FNR) to the enantiocomplementary 2,5- and 3,6-diketocamphane monooxygenases (DKCMOs) that are essential for the growth of Pseudomonas putida ATCC 17453 on (rac)-camphor was examined. By undertaking studies in the time window prior to the induction of Fred, and selectively inhibiting Frp1 and 2 with Zn2+, it was confirmed that PdR could serve as the sole active supplier of FNR to the DKCMOs. This establishes for the first time that the CAM plasmid can function as an autonomous extrachromosomal genetic element able to express all the enzymes and redox factors necessary to ensure entry of the C10 bicyclic terpene into the central pathways of metabolism via isobutyryl-CoA.
Collapse
Affiliation(s)
- Andrew Willetts
- Curnow Consultancies, Helston TR13 9PQ, UK.
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4JG, UK.
| |
Collapse
|