1
|
Stavrianakis G, Sentas E, Zafeirelli S, Tscheulin T, Kizos T. Utilizing Olive Fly Ecology Towards Sustainable Pest Management. BIOLOGY 2025; 14:125. [PMID: 40001893 PMCID: PMC11851947 DOI: 10.3390/biology14020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
The olive fly (Bactrocera oleae, OLF) is a major pest of global significance that occurs in places where olive cultivation thrives. This paper highlights the economic and environmental damage caused by OLF infestations, including reduced olive oil yield and quality, disrupted supply chains, and ecosystem imbalances due to heavy insecticide use. Understanding olive fly ecology is crucial for developing effective control strategies. The review explores the fly's life cycle, its relationship with olive trees, and how environmental factors like temperature and humidity influence population dynamics. Additionally, studying the role of natural enemies and agricultural practices can pave the way for sustainable control methods that minimize environmental harm. Climate change, intensive cultivation, and the development of resistance to insecticides necessitate a shift towards sustainable practices. This includes exploring alternative control methods like biological control with natural enemies and attract-and-kill strategies. Furthermore, a deeper understanding of OLF ecology, including its response to temperature and its ability to find refuge in diverse landscapes, is critical for predicting outbreaks and implementing effective protection strategies. By employing a holistic approach that integrates ecological knowledge with sustainable control methods, we can ensure the continued viability of olive cultivation, protect the environment, and produce high-quality olive oil.
Collapse
Affiliation(s)
- Giorgos Stavrianakis
- Rural Geography & Precision Farming Systems Lab, Department of Geography, University of the Aegean, Mytilene 81100, Greece; (G.S.); (E.S.); (S.Z.)
| | - Efstratios Sentas
- Rural Geography & Precision Farming Systems Lab, Department of Geography, University of the Aegean, Mytilene 81100, Greece; (G.S.); (E.S.); (S.Z.)
| | - Sofia Zafeirelli
- Rural Geography & Precision Farming Systems Lab, Department of Geography, University of the Aegean, Mytilene 81100, Greece; (G.S.); (E.S.); (S.Z.)
| | - Thomas Tscheulin
- Biogeography & Ecology Lab, Department of Geography, University of the Aegean, Mytilene 81100, Greece;
| | - Thanasis Kizos
- Rural Geography & Precision Farming Systems Lab, Department of Geography, University of the Aegean, Mytilene 81100, Greece; (G.S.); (E.S.); (S.Z.)
| |
Collapse
|
2
|
Awad M, Ben Gharsa H, ElKraly OA, Leclerque A, Elnagdy SM. COI Haplotyping and Comparative Microbiomics of the Peach Fruit Fly, an Emerging Pest of Egyptian Olive Orchards. BIOLOGY 2022; 12:biology12010027. [PMID: 36671720 PMCID: PMC9855353 DOI: 10.3390/biology12010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
The peach fruit fly, Bactrocera zonata (Tephritidae), is economically relevant as a highly polyphagous pest infesting over 50 host plants including commercial fruit and horticultural crops. As an invasive species, B. zonata was firmly established in Egypt and holds potential to spread further across the Mediterranean basin. The present study demonstrated that the peach fruit fly was found multiplying in olive orchards at two distant locations in Egypt. This is the first report of B. zonata developing in olives. COI barcoding has revealed evidence for high diversity across these peach fruit fly populations. These data are consistent with multiple rather than a single event leading to both peach fruit fly invasion to Egypt and its adaptation to olive. Comparative microbiomics data for B. zonata developing on different host plants were indicative for microbiome dynamics being involved in the adaptation to olive as a new niche with a potential adaptive role for Erwinia or Providencia bacteria. The possibility of symbiont transfer from the olive fruit fly to the peach fruit fly is discussed. Potentially host switch relevant bacterial symbionts might be preferred targets of symbiosis disruption strategies for integrated pest management or biological control of B. zonata.
Collapse
Affiliation(s)
- Mona Awad
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence: (M.A.); (A.L.); or (S.M.E.)
| | - Haifa Ben Gharsa
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Omnia Abdullah ElKraly
- Bioinsecticides Production Unit, Plant Protection Research Institute, Agriculture Research Center, Ministry of Agriculture, Giza 13611, Egypt
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Andreas Leclerque
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
- Correspondence: (M.A.); (A.L.); or (S.M.E.)
| | - Sherif M. Elnagdy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
- Correspondence: (M.A.); (A.L.); or (S.M.E.)
| |
Collapse
|
3
|
Campos C, Gomes L, Rei FT, Nobre T. Olive Fruit Fly Symbiont Population: Impact of Metamorphosis. Front Microbiol 2022; 13:868458. [PMID: 35509306 PMCID: PMC9058165 DOI: 10.3389/fmicb.2022.868458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/21/2022] [Indexed: 11/14/2022] Open
Abstract
The current symbiotic view of the organisms also calls for new approaches in the way we perceive and manage our pest species. The olive fruit fly, the most important olive tree pest, is dependent on an obligate bacterial symbiont to its larvae development in the immature fruit. This symbiont, Candidatus (Ca.) Erwinia dacicola, is prevalent throughout the host life stages, and we have shown significant changes in its numbers due to olive fruit fly metamorphosis. The olive fruit fly microbiota was analyzed through 16S metabarcoding, at three development stages: last instar larvae, pupae, and adult. Besides Ca. E. dacicola, the olive fruit flies harbor a diverse bacterial flora of which 13 operational taxonomic units (grouped in 9 genera/species) were now determined to persist excluding at metamorphosis (Corynebacterium sp., Delftia sp., Enhydrobacter sp., Kocuria sp., Micrococcus sp., Propionibacterium sp., Pseudomonas sp., Raoultella sp., and Staphylococcus sp.). These findings open a new window of opportunities in symbiosis-based pest management.
Collapse
Affiliation(s)
- Catarina Campos
- Laboratory of Molecular Biology, MED – Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Luis Gomes
- MED – Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Fernando T. Rei
- Laboratory of Entomology, MED – Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Tania Nobre
- Laboratory of Entomology, MED – Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| |
Collapse
|
4
|
Nobre T. Olive fruit fly and its obligate symbiont Candidatus Erwinia dacicola: Two new symbiont haplotypes in the Mediterranean basin. PLoS One 2021; 16:e0256284. [PMID: 34495983 PMCID: PMC8425570 DOI: 10.1371/journal.pone.0256284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022] Open
Abstract
The olive fruit fly, specialized to become monophagous during several life stages, remains the most important olive tree pest with high direct production losses, but also affecting the quality, composition, and inherent properties of the olives. Thought to have originated in Africa is nowadays present wherever olive groves are grown. The olive fruit fly evolved to harbor a vertically transmitted and obligate bacterial symbiont -Candidatus Erwinia dacicola- leading thus to a tight evolutionary history between olive tree, fruit fly and obligate, vertical transmitted symbiotic bacterium. Considering this linkage, the genetic diversity (at a 16S fragment) of this obligate symbiont was added in the understanding of the distribution pattern of the holobiont at nine locations throughout four countries in the Mediterranean Basin. This was complemented with mitochondrial (four mtDNA fragments) and nuclear (ten microsatellites) data of the host. We focused on the previously established Iberian cluster for the B. oleae structure and hypothesised that the Tunisian samples would fall into a differentiated cluster. From the host point of view, we were unable to confirm this hypothesis. Looking at the symbiont, however, two new 16S haplotypes were found exclusively in the populations from Tunisia. This finding is discussed in the frame of host-symbiont specificity and transmission mode. To understand olive fruit fly population diversity and dispersion, the dynamics of the symbiont also needs to be taken into consideration, as it enables the fly to, so efficiently and uniquely, exploit the olive fruit resource.
Collapse
Affiliation(s)
- Tânia Nobre
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Évora, Portugal
- * E-mail:
| |
Collapse
|
5
|
Ashraf U, Chaudhry MN, Peterson AT. Ecological niche models of biotic interactions predict increasing pest risk to olive cultivars with changing climate. Ecosphere 2021. [DOI: 10.1002/ecs2.3714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Uzma Ashraf
- Department of Environmental Sciences and Policy Lahore School of Economics Lahore 55000 Pakistan
| | - Muhammad Nawaz Chaudhry
- Department of Environmental Sciences and Policy Lahore School of Economics Lahore 55000 Pakistan
| | | |
Collapse
|
6
|
Bigiotti G, Sacchetti P, Pastorelli R, Lauzon CR, Belcari A. Bacterial symbiosis in Bactrocera oleae, an Achilles' heel for its pest control. INSECT SCIENCE 2021; 28:874-884. [PMID: 32519794 DOI: 10.1111/1744-7917.12835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Investigations on microbial symbioses in Tephritidae have increased over the past 30 years owing to the potential use of these relationships in developing new control strategies for economically important fruit flies. Bactrocera oleae (Rossi)-the olive fruit fly-is a monophagous species strictly associated with the olive tree, and among all the tephritids, its symbionts are the most investigated. The bacterium Candidatus Erwinia dacicola is the major persistent resident endosymbiont in wild B. oleae populations. Its relationship with B. oleae has been investigated since being identified in 2005. This endosymbiont is vertically transmitted through generations from the female to the egg. It exists at every developmental stage, although it is more abundant in larvae and ovipositing females, and is necessary for both larvae and adults. Studying B. oleae-Ca. E. dacicola, or other B. oleae-microbe interactions, will allow us to develop modern biological control systems for area-wide olive protection and set an example for similar programs in other important food crops. This review summarizes the information available on tephritid-microbe interactions and investigates relationships among fruit flies, bacteria and host plants; however, its focus is on B. oleae and its strict association with Ca. E. dacicola to promote environmentally friendly control strategies for area-wide pest management.
Collapse
Affiliation(s)
- Gaia Bigiotti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy
| | - Patrizia Sacchetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy
| | - Roberta Pastorelli
- Research Centre for Agriculture and Environment, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA-AA), Florence, Italy
| | - Carol R Lauzon
- Department of Biological Sciences, California State University, Hayward, USA
| | - Antonio Belcari
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy
| |
Collapse
|
7
|
Giovannetti L, Viti C. Editorial for the Special Issue: Macro and Microorganism Interactions. Microorganisms 2020; 8:E1751. [PMID: 33171804 PMCID: PMC7695024 DOI: 10.3390/microorganisms8111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 11/24/2022] Open
Abstract
The knowledge of symbiotic, parasitic, and commensal interactions between macro and microorganisms is fundamental to explaining their coexistence, ecology, and productivity [...].
Collapse
Affiliation(s)
| | - Carlo Viti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, I-50144 Firenze, Italy;
| |
Collapse
|
8
|
Mendiola SY, Civitello DJ, Gerardo NM. An integrative approach to symbiont-mediated vector control for agricultural pathogens. CURRENT OPINION IN INSECT SCIENCE 2020; 39:57-62. [PMID: 32299043 DOI: 10.1016/j.cois.2020.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
Vector-borne pathogens pose significant threats to agricultural productivity. Methods that exploit associations between insects and their symbiotic microbes, dubbed symbiont-mediated vector control, are emerging as viable alternatives to insecticides for the control of vector-borne agricultural plant pathogens. The development of methods for effective microbial manipulation, such as RNA interference and paratransgenesis, may facilitate symbiont-mediated vector control tactics aimed at either suppressing insect populations or at manipulating vector competence, an insect vector's ability to acquire, harbor, and transmit pathogens. As suppression strategies transition from the laboratory to the field, the need for methods to evaluate their viability and predict their outcomes is apparent. Mathematical models of symbiont impact on agricultural disease can inform the development of symbiont-mediated vector control. We propose an integrative approach, combining theoretical and empirical experiments to identify the best practices for achieving meaningful improvements to crop health and productivity.
Collapse
Affiliation(s)
- Sandra Y Mendiola
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Rd, Atlanta, GA 30322, USA.
| | - David J Civitello
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Rd, Atlanta, GA 30322, USA
| | - Nicole M Gerardo
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Rd, Atlanta, GA 30322, USA
| |
Collapse
|