1
|
Li Y, Collins DA, Grintzalis K. A Simple Biochemical Method for the Detection of Proteins as Biomarkers of Life on Martian Soil Simulants and the Impact of UV Radiation. Life (Basel) 2023; 13:life13051150. [PMID: 37240795 DOI: 10.3390/life13051150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The search for life on other planets relies on the detection of biosignatures of life. Many macromolecules have been suggested as potential targets, among which are proteins that are considered vital components of life due to their essential roles in forming cellular structures, facilitating cellular communication and signaling, and catalyzing metabolic reactions. In this context, accurate quantification of protein signatures in soil would be advantageous, and while several proposed methods exist, which are limited by their sensitivity and specificity, their applicability needs further testing and validation. To this aim, we optimized a Bradford-based assay with high sensitivity and reproducibility and a simple protocol to quantify protein extracted from a Martian soil simulant. Methods for protein spiking, extraction, and recovery were optimized, using protein standards and bacterial proteins as representative models. The proposed method achieved high sensitivity and reproducibility. Taking into account that life remains could exist on the surface of Mars, which is subjected to UV radiation, a simulation of UV exposure was performed on a spiked soil simulant. UV radiation degraded the protein spike, thus highlighting the importance of searching for the remaining signal from degraded proteins. Finally, the applicability of the method was explored in relation to the storage of the reagent which was stable even up to 12 months, thus making its application possible for future planetary exploration missions.
Collapse
Affiliation(s)
- Yongda Li
- School of Biotechnology, Dublin City University, D09 Y5NO Dublin, Ireland
| | - David A Collins
- School of Biotechnology, Dublin City University, D09 Y5NO Dublin, Ireland
| | | |
Collapse
|
2
|
Abstract
Viruses are the most abundant biological entities on Earth, and yet, they have not received enough consideration in astrobiology. Viruses are also extraordinarily diverse, which is evident in the types of relationships they establish with their host, their strategies to store and replicate their genetic information and the enormous diversity of genes they contain. A viral population, especially if it corresponds to a virus with an RNA genome, can contain an array of sequence variants that greatly exceeds what is present in most cell populations. The fact that viruses always need cellular resources to multiply means that they establish very close interactions with cells. Although in the short term these relationships may appear to be negative for life, it is evident that they can be beneficial in the long term. Viruses are one of the most powerful selective pressures that exist, accelerating the evolution of defense mechanisms in the cellular world. They can also exchange genetic material with the host during the infection process, providing organisms with capacities that favor the colonization of new ecological niches or confer an advantage over competitors, just to cite a few examples. In addition, viruses have a relevant participation in the biogeochemical cycles of our planet, contributing to the recycling of the matter necessary for the maintenance of life. Therefore, although viruses have traditionally been excluded from the tree of life, the structure of this tree is largely the result of the interactions that have been established throughout the intertwined history of the cellular and the viral worlds. We do not know how other possible biospheres outside our planet could be, but it is clear that viruses play an essential role in the terrestrial one. Therefore, they must be taken into account both to improve our understanding of life that we know, and to understand other possible lives that might exist in the cosmos.
Collapse
Affiliation(s)
- Ignacio de la Higuera
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, OR, United States
| | - Ester Lázaro
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, Spain
| |
Collapse
|
3
|
Wu JH, McGenity TJ, Rettberg P, Simões MF, Li WJ, Antunes A. The archaeal class Halobacteria and astrobiology: Knowledge gaps and research opportunities. Front Microbiol 2022; 13:1023625. [PMID: 36312929 PMCID: PMC9608585 DOI: 10.3389/fmicb.2022.1023625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/07/2022] [Indexed: 09/19/2023] Open
Abstract
Water bodies on Mars and the icy moons of the outer solar system are now recognized as likely being associated with high levels of salt. Therefore, the study of high salinity environments and their inhabitants has become increasingly relevant for Astrobiology. Members of the archaeal class Halobacteria are the most successful microbial group living in hypersaline conditions and are recognized as key model organisms for exposure experiments. Despite this, data for the class is uneven across taxa and widely dispersed across the literature, which has made it difficult to properly assess the potential for species of Halobacteria to survive under the polyextreme conditions found beyond Earth. Here we provide an overview of published data on astrobiology-linked exposure experiments performed with members of the Halobacteria, identifying clear knowledge gaps and research opportunities.
Collapse
Affiliation(s)
- Jia-Hui Wu
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Taipa, Macau SAR, China
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Taipa, Macau SAR, China
| | - Terry J. McGenity
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Petra Rettberg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | - Marta F. Simões
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Taipa, Macau SAR, China
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Taipa, Macau SAR, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Taipa, Macau SAR, China
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Taipa, Macau SAR, China
| |
Collapse
|
4
|
Billi D, Blanco Y, Ianneo A, Moreno-Paz M, Aguirre J, Baqué M, Moeller R, de Vera JP, Parro V. Mars-like UV Flux and Ionizing Radiation Differently Affect Biomarker Detectability in the Desert Cyanobacterium Chroococcidiopsis as Revealed by the Life Detector Chip Antibody Microarray. ASTROBIOLOGY 2022; 22:1199-1209. [PMID: 36194868 DOI: 10.1089/ast.2022.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The effect of a Mars-like UV flux and γ-radiation on the detectability of biomarkers in dried cells of Chroococcidiopsis sp. CCMEE 029 was investigated using a fluorescence sandwich microarray immunoassay. The production of anti-Chroococcidiopsis antibodies allowed the immunoidentification of a reduced, though still detectable, signal in dried cells mixed with phyllosilicatic and sulfatic Mars regolith simulants after exposure to 6.8 × 105 kJ/m2 of a Mars-like UV flux. No signal was detected in dried cells that were not mixed with minerals after 1.4 × 105 kJ/m2. For γ-radiation (60Co), no detectable variations of the fluorescence signal occurred in dried cells exposed to 113 kGy compared to non-irradiated dried cells. Our results suggest that immunoassay-based techniques could be used to detect life tracers eventually present in the martian subsurface in freshly excavated materials only if shielded from solar UV. The high structural integrity of biomarkers irradiated with γ-radiation that mimics a dose accumulated in 13 Myr at 2 m depth from the martian surface has implications for the potential detectability of similar organic molecules/compounds by future life-detection missions such as the ExoMars Rosalind Franklin rover.
Collapse
Affiliation(s)
- Daniela Billi
- University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Yolanda Blanco
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| | - Andrea Ianneo
- University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Mercedes Moreno-Paz
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| | - Jacobo Aguirre
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| | - Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department, Berlin, Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Cologne, Germany
| | - Jean-Pierre de Vera
- German Aerospace Center (DLR), Space Operations and Astronaut Training, Microgravity User Support Center, Cologne, Germany
| | - Victor Parro
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
5
|
Bashir AK, Wink L, Duller S, Schwendner P, Cockell C, Rettberg P, Mahnert A, Beblo-Vranesevic K, Bohmeier M, Rabbow E, Gaboyer F, Westall F, Walter N, Cabezas P, Garcia-Descalzo L, Gomez F, Malki M, Amils R, Ehrenfreund P, Monaghan E, Vannier P, Marteinsson V, Erlacher A, Tanski G, Strauss J, Bashir M, Riedo A, Moissl-Eichinger C. Taxonomic and functional analyses of intact microbial communities thriving in extreme, astrobiology-relevant, anoxic sites. MICROBIOME 2021; 9:50. [PMID: 33602336 PMCID: PMC7893877 DOI: 10.1186/s40168-020-00989-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Extreme terrestrial, analogue environments are widely used models to study the limits of life and to infer habitability of extraterrestrial settings. In contrast to Earth's ecosystems, potential extraterrestrial biotopes are usually characterized by a lack of oxygen. METHODS In the MASE project (Mars Analogues for Space Exploration), we selected representative anoxic analogue environments (permafrost, salt-mine, acidic lake and river, sulfur springs) for the comprehensive analysis of their microbial communities. We assessed the microbiome profile of intact cells by propidium monoazide-based amplicon and shotgun metagenome sequencing, supplemented with an extensive cultivation effort. RESULTS The information retrieved from microbiome analyses on the intact microbial community thriving in the MASE sites, together with the isolation of 31 model microorganisms and successful binning of 15 high-quality genomes allowed us to observe principle pathways, which pinpoint specific microbial functions in the MASE sites compared to moderate environments. The microorganisms were characterized by an impressive machinery to withstand physical and chemical pressures. All levels of our analyses revealed the strong and omnipresent dependency of the microbial communities on complex organic matter. Moreover, we identified an extremotolerant cosmopolitan group of 34 poly-extremophiles thriving in all sites. CONCLUSIONS Our results reveal the presence of a core microbiome and microbial taxonomic similarities between saline and acidic anoxic environments. Our work further emphasizes the importance of the environmental, terrestrial parameters for the functionality of a microbial community, but also reveals a high proportion of living microorganisms in extreme environments with a high adaptation potential within habitability borders. Video abstract.
Collapse
Affiliation(s)
- Alexandra Kristin Bashir
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- Department of Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | - Lisa Wink
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Stefanie Duller
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Petra Schwendner
- UK Center for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Charles Cockell
- UK Center for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Petra Rettberg
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Kristina Beblo-Vranesevic
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Maria Bohmeier
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Elke Rabbow
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Frederic Gaboyer
- Centre de Biophysique Moléculaire, Centre National de la Recherché Scientifique (CNRS), Orléans, France
| | - Frances Westall
- Centre de Biophysique Moléculaire, Centre National de la Recherché Scientifique (CNRS), Orléans, France
| | | | | | - Laura Garcia-Descalzo
- Instituto Nacional de Técnica Aeroespacial – Centro de Astrobiología (INTA-CAB), Madrid, Spain
| | - Felipe Gomez
- Instituto Nacional de Técnica Aeroespacial – Centro de Astrobiología (INTA-CAB), Madrid, Spain
| | - Mustapha Malki
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Euan Monaghan
- Leiden Observatory, Universiteit Leiden, Leiden, The Netherlands
| | | | - Viggo Marteinsson
- MATIS, Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Armin Erlacher
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - George Tanski
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Unit, Potsdam, Germany
| | - Jens Strauss
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Unit, Potsdam, Germany
| | - Mina Bashir
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Graz, Austria
| | - Andreas Riedo
- Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
6
|
Reed PA, Lagasse BA, Garcia CD. Fast Degradation of Hydrogen Peroxide by Immobilized Catalase to Enable the Use of Biosensors in Extraterrestrial Bodies. ASTROBIOLOGY 2021; 21:191-198. [PMID: 33052719 DOI: 10.1089/ast.2020.2263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogen peroxide has been postulated to be present on the surface of Europa and Enceladus. While it could represent a potential source of energy for possible life-forms, H2O2 may also interfere with a number of current detection technologies, including biosensors. To take advantage of the selectivity and portability of these devices, simple and reliable routes to degrade the potential H2O2 present should be developed and implemented to prepare for this possibility. Unfortunately, most of the current approaches for removing H2O2 are slow, may affect the sample, or could interfere with the performance of biosensors. To address these limitations, catalase was immobilized onto silica particles and used as a means to selectively decompose H2O2 prior to the analysis of common biomarkers with a biosensor. For these experiments, glucose, l-leucine, and lactic acid were used as representative examples of biomolecules such as carbohydrates, amino acids, and organic acids, respectively, which could be used as biomarkers on extraterrestrial bodies. While the decomposition reaction between catalase and H2O2 is well known, to our knowledge this is the first instance where catalase has been used in combination with a microfluidic paper-based analytical device (μPAD) to implement selective sample pretreatment.
Collapse
Affiliation(s)
- Paige A Reed
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Bryan A Lagasse
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York, USA
| | - Carlos D Garcia
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
7
|
Space Biology Research and Biosensor Technologies: Past, Present, and Future. BIOSENSORS-BASEL 2021; 11:bios11020038. [PMID: 33572823 PMCID: PMC7912197 DOI: 10.3390/bios11020038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/02/2022]
Abstract
In light of future missions beyond low Earth orbit (LEO) and the potential establishment of bases on the Moon and Mars, the effects of the deep space environment on biology need to be examined in order to develop protective countermeasures. Although many biological experiments have been performed in space since the 1960s, most have occurred in LEO and for only short periods of time. These LEO missions have studied many biological phenomena in a variety of model organisms, and have utilized a broad range of technologies. However, given the constraints of the deep space environment, upcoming deep space biological missions will be largely limited to microbial organisms and plant seeds using miniaturized technologies. Small satellites such as CubeSats are capable of querying relevant space environments using novel, miniaturized instruments and biosensors. CubeSats also provide a low-cost alternative to larger, more complex missions, and require minimal crew support, if any. Several have been deployed in LEO, but the next iterations of biological CubeSats will travel beyond LEO. They will utilize biosensors that can better elucidate the effects of the space environment on biology, allowing humanity to return safely to deep space, venturing farther than ever before.
Collapse
|
8
|
Fairén AG, Gómez-Elvira J, Briones C, Prieto-Ballesteros O, Rodríguez-Manfredi JA, López Heredero R, Belenguer T, Moral AG, Moreno-Paz M, Parro V. The Complex Molecules Detector (CMOLD): A Fluidic-Based Instrument Suite to Search for (Bio)chemical Complexity on Mars and Icy Moons. ASTROBIOLOGY 2020; 20:1076-1096. [PMID: 32856927 PMCID: PMC7116096 DOI: 10.1089/ast.2019.2167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Organic chemistry is ubiquitous in the Solar System, and both Mars and a number of icy satellites of the outer Solar System show substantial promise for having hosted or hosting life. Here, we propose a novel astrobiologically focused instrument suite that could be included as scientific payload in future missions to Mars or the icy moons: the Complex Molecules Detector, or CMOLD. CMOLD is devoted to determining different levels of prebiotic/biotic chemical and structural targets following a chemically general approach (i.e., valid for both terrestrial and nonterrestrial life), as well as their compatibility with terrestrial life. CMOLD is based on a microfluidic block that distributes a liquid suspension sample to three instruments by using complementary technologies: (1) novel microscopic techniques for identifying ultrastructures and cell-like morphologies, (2) Raman spectroscopy for detecting universal intramolecular complexity that leads to biochemical functionality, and (3) bioaffinity-based systems (including antibodies and aptamers as capture probes) for finding life-related and nonlife-related molecular structures. We highlight our current developments to make this type of instruments flight-ready for upcoming Mars missions: the Raman spectrometer included in the science payload of the ESAs Rosalind Franklin rover (Raman Laser Spectrometer instrument) to be launched in 2022, and the biomarker detector that was included as payload in the NASA Icebreaker lander mission proposal (SOLID instrument). CMOLD is a robust solution that builds on the combination of three complementary, existing techniques to cover a wide spectrum of targets in the search for (bio)chemical complexity in the Solar System.
Collapse
Affiliation(s)
- Alberto G. Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca New York, USA
| | - Javier Gómez-Elvira
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | | | | | | | - Raquel López Heredero
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - Tomás Belenguer
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - Andoni G. Moral
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | | | - Víctor Parro
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| |
Collapse
|
9
|
Amalfitano S, Levantesi C, Copetti D, Stefani F, Locantore I, Guarnieri V, Lobascio C, Bersani F, Giacosa D, Detsis E, Rossetti S. Water and microbial monitoring technologies towards the near future space exploration. WATER RESEARCH 2020; 177:115787. [PMID: 32315899 DOI: 10.1016/j.watres.2020.115787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Space exploration is demanding longer lasting human missions and water resupply from Earth will become increasingly unrealistic. In a near future, the spacecraft water monitoring systems will require technological advances to promptly identify and counteract contingent events of waterborne microbial contamination, posing health risks to astronauts with lowered immune responsiveness. The search for bio-analytical approaches, alternative to those applied on Earth by cultivation-dependent methods, is pushed by the compelling need to limit waste disposal and avoid microbial regrowth from analytical carryovers. Prospective technologies will be selected only if first validated in a flight-like environment, by following basic principles, advantages, and limitations beyond their current applications on Earth. Starting from the water monitoring activities applied on the International Space Station, we provide a critical overview of the nucleic acid amplification-based approaches (i.e., loop-mediated isothermal amplification, quantitative PCR, and high-throughput sequencing) and early-warning methods for total microbial load assessments (i.e., ATP-metry, flow cytometry), already used at a high readiness level aboard crewed space vehicles. Our findings suggest that the forthcoming space applications of mature technologies will be necessarily bounded by a compromise between analytical performances (e.g., speed to results, identification depth, reproducibility, multiparametricity) and detrimental technical requirements (e.g., reagent usage, waste production, operator skills, crew time). As space exploration progresses toward extended missions to Moon and Mars, miniaturized systems that also minimize crew involvement in their end-to-end operation are likely applicable on the long-term and suitable for the in-flight water and microbiological research.
Collapse
Affiliation(s)
- Stefano Amalfitano
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015, Monterotondo, Roma, Italy.
| | - Caterina Levantesi
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015, Monterotondo, Roma, Italy
| | - Diego Copetti
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via del Mulino 19, 20861, Brugherio, Monza-Brianza, Italy
| | - Fabrizio Stefani
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via del Mulino 19, 20861, Brugherio, Monza-Brianza, Italy
| | - Ilaria Locantore
- Thales Alenia Space Italia SpA, Strada Antica di Collegno, 253 - 10146, Turin, Italy
| | - Vincenzo Guarnieri
- Thales Alenia Space Italia SpA, Strada Antica di Collegno, 253 - 10146, Turin, Italy
| | - Cesare Lobascio
- Thales Alenia Space Italia SpA, Strada Antica di Collegno, 253 - 10146, Turin, Italy
| | - Francesca Bersani
- Centro Ricerche SMAT, Società Metropolitana Acque Torino S.p.A., C.so Unità d'Italia 235/3, 10127, Torino, Italy
| | - Donatella Giacosa
- Centro Ricerche SMAT, Società Metropolitana Acque Torino S.p.A., C.so Unità d'Italia 235/3, 10127, Torino, Italy
| | - Emmanouil Detsis
- European Science Foundation, 1 quai Lezay Marnésia, BP 90015, 67080, Strasbourg Cedex, France
| | - Simona Rossetti
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015, Monterotondo, Roma, Italy
| |
Collapse
|