1
|
Fan Y, Zhou H, Yan H, Li A, Qiu L, Zhou Z, Deng Y, Chen R, Wu J. Comparative transcriptomic analysis unveils candidate genes associated with sugarcane growth rate. PLANTA 2024; 260:128. [PMID: 39472317 DOI: 10.1007/s00425-024-04555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024]
Abstract
Sugarcane (Saccharum spp.) growth is regulated by intricate gene networks and hormone secretions, positively correlating with sugarcane yield. There is a rising interest in exploring how the candidate genes found in sugarcane respond to plant growth. In this study, we simulated a typical growth environment to obtain accurate phenotypic data and screened for potential genes associated with plant growth through transcriptomics. Compared to Saccharum GuiTang 42, the other variety Saccharum GuiTang 44 exhibited earlier germination, a higher emergence rate, thicker pseudostems, taller plants, and a more extensive root system. The middle buds formed the greatest number of roots, followed by the lower and upper buds. Indole-3-acetic acid (IAA) and jasmonic acid effectively promoted bud development, while abscisic acid and trans-zeatin exhibited negative correlations with sugarcane bud growth. Transcriptome data from the upper, middle, and lower buds revealed 24,158 differentially expressed genes in all three comparisons, with MAPK signaling emerging as a critical pathway. The photosynthesis-antenna protein pathway is vital for middle and lower bud development during root germination. Lastly, key gene modules related to differences in hormone content between the two varieties were defined through weighted correlation network analysis and identified. The module significantly associated with IAA was enriched in pathways such as Proteasome and Protein processing in the endoplasmic reticulum, and the upregulation of key genes involved in this gene module had a highly significant positive correlation with bud outgrowth combined with IAA secretion. In conclusion, we have elucidated the pathways of hormones during sugarcane growth and the interactions between IAA and critical genes. These in-depth findings may guide modern sugarcane breeding.
Collapse
Affiliation(s)
- Yegeng Fan
- Sugarcane Research Institute, 530007, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Nanning, China
- Guangxi Key Laboratory of Guangxi Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, 530007, Nanning, China
| | - Huiwen Zhou
- Sugarcane Research Institute, 530007, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Nanning, China
- Guangxi Key Laboratory of Guangxi Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, 530007, Nanning, China
| | - Haifeng Yan
- Sugarcane Research Institute, 530007, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Nanning, China
- Guangxi Key Laboratory of Guangxi Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, 530007, Nanning, China
| | - Aomei Li
- Sugarcane Research Institute, 530007, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Nanning, China
- Guangxi Key Laboratory of Guangxi Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, 530007, Nanning, China
| | - Lihang Qiu
- Sugarcane Research Institute, 530007, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Nanning, China
- Guangxi Key Laboratory of Guangxi Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, 530007, Nanning, China
| | - Zhongfeng Zhou
- Sugarcane Research Institute, 530007, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Nanning, China
- Guangxi Key Laboratory of Guangxi Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, 530007, Nanning, China
| | - Yuchi Deng
- Sugarcane Research Institute, 530007, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Nanning, China
- Guangxi Key Laboratory of Guangxi Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, 530007, Nanning, China
| | - Rongfa Chen
- Sugarcane Research Institute, 530007, Nanning, China.
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Nanning, China.
- Guangxi Key Laboratory of Guangxi Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, 530007, Nanning, China.
| | - Jianming Wu
- Sugarcane Research Institute, 530007, Nanning, China.
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Nanning, China.
- Guangxi Key Laboratory of Guangxi Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, 530007, Nanning, China.
| |
Collapse
|
2
|
Wei YS, Zhao JY, Javed T, Ali A, Huang MT, Fu HY, Zhang HL, Gao SJ. Insights into Reactive Oxygen Species Production-Scavenging System Involved in Sugarcane Response to Xanthomonas albilineans Infection under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:862. [PMID: 38592879 PMCID: PMC10974620 DOI: 10.3390/plants13060862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Plants must adapt to the complex effects of several stressors brought on by global warming, which may result in interaction and superposition effects between diverse stressors. Few reports are available on how drought stress affects Xanthomonas albilineans (Xa) infection in sugarcane (Saccharum spp. hybrids). Drought and leaf scald resistance were identified on 16 sugarcane cultivars using Xa inoculation and soil drought treatments, respectively. Subsequently, four cultivars contrasting to drought and leaf scald resistance were used to explore the mechanisms of drought affecting Xa-sugarcane interaction. Drought stress significantly increased the occurrence of leaf scald and Xa populations in susceptible cultivars but had no obvious effect on resistant cultivars. The ROS bursting and scavenging system was significantly activated in sugarcane in the process of Xa infection, particularly in the resistant cultivars. Compared with Xa infection alone, defense response via the ROS generating and scavenging system was obviously weakened in sugarcane (especially in susceptible cultivars) under Xa infection plus drought stress. Collectively, ROS might play a crucial role involving sugarcane defense against combined effects of Xa infection and drought stress.
Collapse
Affiliation(s)
- Yao-Sheng Wei
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.-S.W.); (J.-Y.Z.); (A.A.); (M.-T.H.); (H.-Y.F.); (H.-L.Z.)
| | - Jian-Ying Zhao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.-S.W.); (J.-Y.Z.); (A.A.); (M.-T.H.); (H.-Y.F.); (H.-L.Z.)
| | - Talha Javed
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.-S.W.); (J.-Y.Z.); (A.A.); (M.-T.H.); (H.-Y.F.); (H.-L.Z.)
| | - Mei-Ting Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.-S.W.); (J.-Y.Z.); (A.A.); (M.-T.H.); (H.-Y.F.); (H.-L.Z.)
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.-S.W.); (J.-Y.Z.); (A.A.); (M.-T.H.); (H.-Y.F.); (H.-L.Z.)
| | - Hui-Li Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.-S.W.); (J.-Y.Z.); (A.A.); (M.-T.H.); (H.-Y.F.); (H.-L.Z.)
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.-S.W.); (J.-Y.Z.); (A.A.); (M.-T.H.); (H.-Y.F.); (H.-L.Z.)
| |
Collapse
|
3
|
Zhou G, Shabbir R, Sun Z, Chang Y, Liu X, Chen P. Transcriptomic Analysis Reveals Candidate Genes in Response to Sorghum Mosaic Virus and Salicylic Acid in Sugarcane. PLANTS (BASEL, SWITZERLAND) 2024; 13:234. [PMID: 38256787 PMCID: PMC10819896 DOI: 10.3390/plants13020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024]
Abstract
Sorghum mosaic virus (SrMV) is one of the most prevalent viruses deteriorating sugarcane production. Salicylic acid (SA) plays an essential role in the defense mechanism of plants and its exogenous application has been observed to induce the resistance against biotic and abiotic stressors. In this study, we set out to investigate the mechanism by which sorghum mosaic virus (SrMV) infected sugarcane responds to SA treatment in two sugarcane cultivars, i.e., ROC22 and Xuezhe. Notably, significantly low viral populations were observed at different time points (except for 28 d in ROC22) in response to post-SA application in both cultivars as compared to control based on qPCR data. Furthermore, the lowest number of population size in Xuezhe (20 copies/µL) and ROC22 (95 copies/µL) was observed in response to 1 mM exogenous SA application. A total of 2999 DEGs were identified, of which 731 and 2268 DEGs were up- and down-regulated, respectively. Moreover, a total of 806 DEGs were annotated to GO enrichment categories: 348 biological processes, 280 molecular functions, and 178 cellular components. GO functional categorization revealed that DEGs were mainly enriched in metabolic processes, extracellular regions, and glucosyltransferase activity, while KEGG annotation revealed that DEGs were mainly concentrated in phenylpropanoid biosynthesis and plant-pathogen interaction suggesting the involvement of these pathways in SA-induced disease resistance of sugarcane in response to SrMV infection. The RNA-seq dataset and qRT-PCR assay showed that the transcript levels of PR1a, PR1b, PR1c, NPR1a, NPR1b, PAL, ICS, and ABA were significantly up-regulated in response to SA treatment under SrMV infection, indicating their positive involvement in stress endorsement. Overall, this research characterized sugarcane transcriptome during SrMV infection and shed light on further interaction of plant-pathogen under exogenous application of SA treatment.
Collapse
Affiliation(s)
- Genhua Zhou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.Z.); (R.S.); (Z.S.); (Y.C.); (X.L.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rubab Shabbir
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.Z.); (R.S.); (Z.S.); (Y.C.); (X.L.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zihao Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.Z.); (R.S.); (Z.S.); (Y.C.); (X.L.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yating Chang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.Z.); (R.S.); (Z.S.); (Y.C.); (X.L.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinli Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.Z.); (R.S.); (Z.S.); (Y.C.); (X.L.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pinghua Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.Z.); (R.S.); (Z.S.); (Y.C.); (X.L.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Lin JX, Ali A, Chu N, Fu HY, Huang MT, Mbuya SN, Gao SJ, Zhang HL. Identification of ARF transcription factor gene family and its defense responses to bacterial infection and salicylic acid treatment in sugarcane. Front Microbiol 2023; 14:1257355. [PMID: 37744907 PMCID: PMC10513436 DOI: 10.3389/fmicb.2023.1257355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Auxin response factor (ARF) is a critical regulator in the auxin signaling pathway, involved in a variety of plant biological processes. Here, gene members of 24 SpapARFs and 39 SpnpARFs were identified in two genomes of Saccharum spontaneum clones AP85-441 and Np-X, respectively. Phylogenetic analysis showed that all ARF genes were clustered into four clades, which is identical to those ARF genes in maize (Zea mays) and sorghum (Sorghum bicolor). The gene structure and domain composition of this ARF family are conserved to a large degree across plant species. The SpapARF and SpnpARF genes were unevenly distributed on chromosomes 1-8 and 1-10 in the two genomes of AP85-441 and Np-X, respectively. Segmental duplication events may also contribute to this gene family expansion in S. spontaneum. The post-transcriptional regulation of ARF genes likely involves sugarcane against various stressors through a miRNA-medicated pathway. Expression levels of six representative ShARF genes were analyzed by qRT-PCR assays on two sugarcane cultivars [LCP85-384 (resistant to leaf scald) and ROC20 (susceptible to leaf scald)] triggered by Acidovorax avenae subsp. avenae (Aaa) and Xanthomonas albilineans (Xa) infections and salicylic acid (SA) treatment. ShARF04 functioned as a positive regulator under Xa and Aaa stress, whereas it was a negative regulator under SA treatment. ShARF07/17 genes played positive roles against both pathogenic bacteria and SA stresses. Additionally, ShARF22 was negatively modulated by Xa and Aaa stimuli in both cultivars, particularly LCP85-384. These findings imply that sugarcane ARFs exhibit functional redundancy and divergence against stressful conditions. This work lays the foundation for further research on ARF gene functions in sugarcane against diverse environmental stressors.
Collapse
Affiliation(s)
- Jia-Xin Lin
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Na Chu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mei-Ting Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sylvain Ntambo Mbuya
- Faculté des Sciences Agronomiques, Département de production végétale, Laboratoire de Recherche en Biofortification, Defense et Valorisation des Cultures (BioDev), Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui-Li Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Agho CA, Kaurilind E, Tähtjärv T, Runno-Paurson E, Niinemets Ü. Comparative transcriptome profiling of potato cultivars infected by late blight pathogen Phytophthora infestans: Diversity of quantitative and qualitative responses. Genomics 2023; 115:110678. [PMID: 37406973 PMCID: PMC10548088 DOI: 10.1016/j.ygeno.2023.110678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
The Estonia potato cultivar Ando has shown elevated field resistance to Phytophthora infestans, even after being widely grown for over 40 years. A comprehensive transcriptional analysis was performed using RNA-seq from plant leaf tissues to gain insight into the mechanisms activated for the defense after infection. Pathogen infection in Ando resulted in about 5927 differentially expressed genes (DEGs) compared to 1161 DEGs in the susceptible cultivar Arielle. The expression levels of genes related to plant disease resistance such as serine/threonine kinase activity, signal transduction, plant-pathogen interaction, endocytosis, autophagy, mitogen-activated protein kinase (MAPK), and others were significantly enriched in the upregulated DEGs in Ando, whereas in the susceptible cultivar, only the pathway related to phenylpropanoid biosynthesis was enriched in the upregulated DEGs. However, in response to infection, photosynthesis was deregulated in Ando. Multi-signaling pathways of the salicylic-jasmonic-ethylene biosynthesis pathway were also activated in response to Phytophthora infestans infection.
Collapse
Affiliation(s)
- C A Agho
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia.
| | - E Kaurilind
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - T Tähtjärv
- Centre of Estonian Rural Research and Knowledge, J. Aamisepa 1, 48309 Jõgeva, Estonia
| | - E Runno-Paurson
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Ü Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
6
|
Li AM, Liao F, Wang M, Chen ZL, Qin CX, Huang RQ, Verma KK, Li YR, Que YX, Pan YQ, Huang DL. Transcriptomic and Proteomic Landscape of Sugarcane Response to Biotic and Abiotic Stressors. Int J Mol Sci 2023; 24:ijms24108913. [PMID: 37240257 DOI: 10.3390/ijms24108913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sugarcane, a C4 plant, provides most of the world's sugar, and a substantial amount of renewable bioenergy, due to its unique sugar-accumulating and feedstock properties. Brazil, India, China, and Thailand are the four largest sugarcane producers worldwide, and the crop has the potential to be grown in arid and semi-arid regions if its stress tolerance can be improved. Modern sugarcane cultivars which exhibit a greater extent of polyploidy and agronomically important traits, such as high sugar concentration, biomass production, and stress tolerance, are regulated by complex mechanisms. Molecular techniques have revolutionized our understanding of the interactions between genes, proteins, and metabolites, and have aided in the identification of the key regulators of diverse traits. This review discusses various molecular techniques for dissecting the mechanisms underlying the sugarcane response to biotic and abiotic stresses. The comprehensive characterization of sugarcane's response to various stresses will provide targets and resources for sugarcane crop improvement.
Collapse
Affiliation(s)
- Ao-Mei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Fen Liao
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Miao Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zhong-Liang Chen
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Cui-Xian Qin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Ruo-Qi Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Krishan K Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - You-Xiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - You-Qiang Pan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Dong-Liang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
7
|
Zhao JY, Chen J, Hu ZT, Li J, Fu HY, Rott PC, Gao SJ. Genetic and morphological variants of Acidovorax avenae subsp. avenae cause red stripe of sugarcane in China. FRONTIERS IN PLANT SCIENCE 2023; 14:1127928. [PMID: 36814761 PMCID: PMC9939834 DOI: 10.3389/fpls.2023.1127928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Sugarcane (Saccharum spp.) is an important cash crop for production of sugar and bioethanol. Red stripe caused by Acidovorax avenae subsp. avenae (Aaa) is a disease that occurs in numerous sugarcane-growing regions worldwide. In this study, 17 strains of Aaa were isolated from 13 symptomatic leaf samples in China. Nine of these strains produced white-cream colonies on nutrient agar medium while the other eight produced yellow colonies. In pairwise sequence comparisons of the 16S-23S rRNA internally transcribed spacer (ITS), the 17 strains had 98.4-100% nucleotide identity among each other and 98.2-99.5% identity with the reference strain of Aaa (ATCC 19860). Three RFLP patterns based on this ITS sequence were also found among the strains of Aaa obtained in this study. Multilocus sequence typing (MLST) based on five housekeeping genes (ugpB, pilT, lepA, trpB, and gltA) revealed that the strains of Aaa from sugarcane in China and a strain of Aaa (30179) isolated from sorghum in Brazil formed a unique evolutionary subclade. Twenty-four additional strains of Aaa from sugarcane in Argentina and from other crops worldwide were distributed in two other and separate subclades, suggesting that strains of A. avenae from sugarcane are clonal populations with local specificities. Two strains of Aaa from China (CNGX08 forming white-cream colored colonies and CNGD05 forming yellow colonies) induced severe symptoms of red stripe in sugarcane varieties LC07-150 and ZZ8 but differed based on disease incidence in two separate inoculation experiments. Infected plants also exhibited increased salicylic acid (SA) content and transcript expression of gene PR-1, indicating that the SA-mediated signal pathway is involved in the response to infection by Aaa. Consequently, red stripe of sugarcane in China is caused by genetically different strains of Aaa and at least two morphological variants. The impact of these independent variations on epidemics of red stripe remains to be investigated.
Collapse
Affiliation(s)
- Jian-Ying Zhao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Juan Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhong-Ting Hu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Juan Li
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Philippe C. Rott
- CIRAD, UMR PHIM, Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Zhou JR, Li J, Lin JX, Xu HM, Chu N, Wang QN, Gao SJ. Genome-wide characterization of cys-tathionine-β-synthase domain-containing proteins in sugarcane reveals their role in defense responses under multiple stressors. FRONTIERS IN PLANT SCIENCE 2022; 13:985653. [PMID: 36092401 PMCID: PMC9453547 DOI: 10.3389/fpls.2022.985653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Cys-tathionine-β-synthase (CBS) domain-containing proteins (CDCPs) are essential for regulating plant responses to various biotic and abiotic stressors. This study describes the systematic identification and characterization of CDCP family genes in Saccharum spontaneum. A total of 95 SsCDCP genes and eight phylogenetic groups were identified that were distributed over 29 chromosomes of the AP85-441 genome. Most (78/95) SsCDCPs underwent fragment duplication events, and 64 gene pairs were located in synteny blocks. Expression profiling of nine ShCDCPs was also carried out in the Saccharum spp. cultivars ROC22 and MT11-611 that are resistant and susceptible to red stripe, respectively, in response to: (i) Infection by the bacterial pathogen Acidovorax avenue subsp. avenae (Aaa); (ii) abiotic stressors (drought and salinity); and (iii) exogenous salicylic acid (SA) treatment. Members of one gene pair (ShCBSD-PB1-5A and ShCBSD-PB1-7A-1) with a fragment duplication event acted as negative regulators in sugarcane under four stresses, as supported by the significantly decreased expression levels of ShCBSD-PB1-5A (23-83%) and ShCBSD-PB1-7A-1 (15-75%) at all-time points, suggesting that they have functional redundancy. Genes in another pair, ShCBS-4C and ShCBS-4D-1, which have a fragment duplication event, play opposing regulatory roles in sugarcane exposed to multiple stresses, particularly Aaa and NaCl treatments. ShCBS-4C expression was significantly decreased by 32-77%, but ShCBS-4D-1 expression was dramatically upregulated by 1.2-6.2-fold in response to Aaa treatment of both cultivars across all-time points. This result suggested that both genes exhibited functional divergence. Meanwhile, the expression of SsCBSDCBS-5A was significantly upregulated in ROC22 by 1.4-4.6-fold in response to the four stressors. These findings provide important clues for further elucidating the function of ShCDCP genes in sugarcane responding to a diverse range of stresses.
Collapse
Affiliation(s)
- Jing-Ru Zhou
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juan Li
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jia-Xin Lin
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui-Mei Xu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Na Chu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qin-Nan Wang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Shabbir R, Javed T, Afzal I, Sabagh AE, Ali A, Vicente O, Chen P. Modern Biotechnologies: Innovative and Sustainable Approaches for the Improvement of Sugarcane Tolerance to Environmental Stresses. AGRONOMY 2021; 11:1042. [DOI: 10.3390/agronomy11061042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Sugarcane (Saccharum spp.) is one of the most important industrial cash crops, contributing to the world sugar industry and biofuel production. It has been cultivated and improved from prehistoric times through natural selection and conventional breeding and, more recently, using the modern tools of genetic engineering and biotechnology. However, the heterogenicity, complex poly-aneuploid genome and susceptibility of sugarcane to different biotic and abiotic stresses represent impediments that require us to pay greater attention to the improvement of the sugarcane crop. Compared to traditional breeding, recent advances in breeding technologies (molecular marker-assisted breeding, sugarcane transformation, genome-editing and multiple omics technologies) can potentially improve sugarcane, especially against environmental stressors. This article will focus on efficient modern breeding technologies, which provide crucial clues for the engineering of sugarcane cultivars resistant to environmental stresses.
Collapse
|
10
|
Ali A, Chu N, Ma P, Javed T, Zaheer U, Huang MT, Fu HY, Gao SJ. Genome-wide analysis of mitogen-activated protein (MAP) kinase gene family expression in response to biotic and abiotic stresses in sugarcane. PHYSIOLOGIA PLANTARUM 2021; 171:86-107. [PMID: 32909626 DOI: 10.1111/ppl.13208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 05/22/2023]
Abstract
To systematically analyze mitogen-activated protein (MAP) kinase gene families and their expression profiles in sugarcane (Saccharum spp. hybrids; Sh) under diverse biotic and abiotic stresses, we identified 15 ShMAPKs, 6 ShMAPKKs and 16 ShMAPKKKs genes in the sugarcane cultivar R570 genome. These were also confirmed in one S. spontaneum genome and two transcriptome datasets of sugarcane trigged by Acidovorax avenae subsp. avenae (Aaa) and Xanthomonas albilineans (Xa) infections. Phylogenetic analysis revealed that four subgroups were present in each ShMAPK and ShMAPKK family and three sub-families (RAF, MEKK and ZIK) presented in the ShMAPKKK family. Conserved protein motif and gene structure analyses supported the evolutionary relationships of the three families inferred from the phylogenetic analysis. All of the ShMAPK, ShMAPKK and ShMAPKKK genes identified in Saccharum spp. R570 were distributed on chromosomes 1-7 and 9-10. RNA-seq and qRT-PCR analyses indicated that ShMAPK07 and ShMAPKKK02 were defense-responsive genes in sugarcane challenged by both Aaa and Xa stimuli, while some genes were upregulated specifically by Aaa and Xa infection. Additionally, ShMAPK05 acted as a negative regulator under drought and salinity stress, but served as a positive regulator under salicylic acid (SA) treatment. ShMAPK07 plays a positive role under drought stress, but a negative role under SA treatment. ShMAPKKK01 was negatively modulated by both salinity stress and SA treatment, whereas ShMAPKKK06 was positively regulated by both of the two stress stimuli. Our results suggest that members of MAPK cascade gene families regulate adverse stress responses through multiple signal transduction pathways in sugarcane.
Collapse
Affiliation(s)
- Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Na Chu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Panpan Ma
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Talha Javed
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Uroosa Zaheer
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mei-Ting Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|