1
|
Olani A, Galante D, Lakew M, Wakjira BS, Mekonnen GA, Rufael T, Teklemariam T, Kumilachew W, Dejene S, Woldemeskel A, Wakjira A, Abichu G, Ashenafi B, Kebede N, Feleke Haile A, Bari FD, Del Sambro L, Eguale T. Identification of Bacillus anthracis Strains from Animal Cases in Ethiopia and Genetic Characterization by Whole-Genome Sequencing. Pathogens 2025; 14:39. [PMID: 39861000 PMCID: PMC11768497 DOI: 10.3390/pathogens14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Anthrax is a zoonotic disease characterized by rapid onset with usual fatal outcomes in livestock and wildlife. In Ethiopia, anthrax is a persistent disease; however, there are limited data on the isolation and molecular characterization of Bacillus anthracis strains. This study aimed to characterize B. anthracis isolated from animal anthrax outbreaks between 2019 and 2024, from different localities in Ethiopia. B. anthracis was identified using standard microbiology techniques and confirmed by real-time PCR. For the first time in Ethiopia, the genetic diversity of five Bacillus anthracis strains, isolated from dead cattle and goats, was investigated by Whole Genome Sequencing (WGS) and bioinformatics analyses. The five sequenced strains were compared to one Ethiopian B. anthracis genome and the other 29 B. anthracis genomes available in the global genetic databases to determine their phylogeny. The genomes of the strains were also analyzed to detect the presence of antimicrobial resistance and virulence genes. The whole genome SNP analysis showed that the Ethiopian B. anthracis strains were grouped in the A clade. Three strains (BA2, BA5, and BA6) belonged to the A.Br.034 subgroup (A.Br.005/006), and two strains (BA1 and BA4) belonged to the A.Br.161 (Heroin) clade of the Trans-Eurasian (TEA) group. The findings of this study will contribute to expanding the current understanding of the anthrax hotspots in Ethiopia, and the phylogenetic correlation and/or diversity of the circulating strains.
Collapse
Affiliation(s)
- Abebe Olani
- Animal Health Institute, Sebeta P.O. Box 04, Ethiopia; (M.L.); (B.S.W.); (G.A.M.); (T.R.); (G.A.)
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (N.K.); (A.F.H.); (T.E.)
| | - Domenico Galante
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Anthrax Reference Institute of Italy, 71121 Foggia, Italy;
| | - Matios Lakew
- Animal Health Institute, Sebeta P.O. Box 04, Ethiopia; (M.L.); (B.S.W.); (G.A.M.); (T.R.); (G.A.)
| | - Bayeta Senbeta Wakjira
- Animal Health Institute, Sebeta P.O. Box 04, Ethiopia; (M.L.); (B.S.W.); (G.A.M.); (T.R.); (G.A.)
| | - Getnet Abie Mekonnen
- Animal Health Institute, Sebeta P.O. Box 04, Ethiopia; (M.L.); (B.S.W.); (G.A.M.); (T.R.); (G.A.)
| | - Tesfaye Rufael
- Animal Health Institute, Sebeta P.O. Box 04, Ethiopia; (M.L.); (B.S.W.); (G.A.M.); (T.R.); (G.A.)
| | - Tsegaye Teklemariam
- Mizan Veterinary Laboratory Center, South West Ethiopia Region, Mizan P.O. Box 251, Ethiopia; (T.T.); (A.W.)
| | | | - Shimalis Dejene
- Sodo Regional Veterinary Laboratory, Sodo P.O. Box 82, Ethiopia;
| | - Ayele Woldemeskel
- Mizan Veterinary Laboratory Center, South West Ethiopia Region, Mizan P.O. Box 251, Ethiopia; (T.T.); (A.W.)
| | - Adanech Wakjira
- Negelle Health Science College, Negelle P.O. Box 186, Ethiopia;
| | - Getachew Abichu
- Animal Health Institute, Sebeta P.O. Box 04, Ethiopia; (M.L.); (B.S.W.); (G.A.M.); (T.R.); (G.A.)
| | - Baye Ashenafi
- Department of Public Health, Institute of Public Health, University of Gondar, Gondar P.O. Box 196, Ethiopia;
| | - Nigatu Kebede
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (N.K.); (A.F.H.); (T.E.)
| | - Aklilu Feleke Haile
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (N.K.); (A.F.H.); (T.E.)
| | - Fufa Dawo Bari
- Department of Microbiology, Immunology and Veterinary Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 1176, Ethiopia;
| | - Laura Del Sambro
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Anthrax Reference Institute of Italy, 71121 Foggia, Italy;
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (N.K.); (A.F.H.); (T.E.)
- Ohio State Global One Health, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Kompes G, Duvnjak S, Reil I, Mihaljević Ž, Habrun B, Benić M, Cvetnić L, Špičić S, Bagarić A. Antimicrobial Resistance Profile, Whole-Genome Sequencing and Core Genome Multilocus Sequence Typing of B. anthracis Isolates in Croatia from 2001 to 2022. Antibiotics (Basel) 2024; 13:639. [PMID: 39061321 PMCID: PMC11274125 DOI: 10.3390/antibiotics13070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Bacillus anthracis, the causative agent of anthrax disease, is a worldwide threat to livestock, wildlife and public health. It is also considered one of the most important pathogens of bioterrorism. Rapid and reliable diagnosis and administration of antimicrobials are essential for effective anthrax treatment. In this study, we determined the in vitro susceptibilities of 40 isolates of B. anthracis isolated in Croatia over the recent two decades to 18 antimicrobials. Whole-genome sequencing was performed, and bioinformatics tools were used to determine virulence factors and antimicrobial resistance genes. Core genome-based multilocus sequence typing was used for isolate comparison and phylogenetic analysis. All isolates were susceptible to all antimicrobials recommended for post-exposure prophylaxis or anthrax therapy. Susceptibility was found to all other tested antimicrobials that are an alternative for primary therapy. We found two beta-lactamase genes, but their expression is not sufficient to confer resistance. In all isolates used in this study, we found 21 virulence genes, 8 of which are responsible for toxin and capsule production. As far as phylogenetic analysis is concerned, the B. anthracis isolates from Croatia are categorised into two clades. The first is clade A, subclade Trans Eurasia, and the other is clade B, subclade B2.
Collapse
Affiliation(s)
- Gordan Kompes
- Laboratory for General Bacteriology and Mycology, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (G.K.); (B.H.); (A.B.)
| | - Sanja Duvnjak
- Laboratory for Bacterial Zoonoses and Molecular Diagnostics of Bacterial Diseases, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Irena Reil
- Laboratory for Bacterial Zoonoses and Molecular Diagnostics of Bacterial Diseases, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Željko Mihaljević
- Laboratory for Pathology, Department for Pathology, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Boris Habrun
- Laboratory for General Bacteriology and Mycology, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (G.K.); (B.H.); (A.B.)
| | - Miroslav Benić
- Laboratory for Mastitis and Raw Milk Quality, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (M.B.); (L.C.)
| | - Luka Cvetnić
- Laboratory for Mastitis and Raw Milk Quality, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (M.B.); (L.C.)
| | - Silvio Špičić
- Laboratory for Bacterial Zoonoses and Molecular Diagnostics of Bacterial Diseases, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Antonela Bagarić
- Laboratory for General Bacteriology and Mycology, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (G.K.); (B.H.); (A.B.)
| |
Collapse
|
3
|
Ye R, Shao G, Ma Z, Gao Q, Wang B, Li T. Prediction of Anthracnose Risk in Large-Leaf Tea Trees Based on the Atmospheric Environmental Changes in Yunnan Tea Gardens—Cox Regression Model and Machine Learning Model. AGRONOMY 2024; 14:1501. [DOI: 10.3390/agronomy14071501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Crop diseases pose a major threat to agricultural production, quality, and sustainable development, highlighting the importance of early disease risk prediction for effective disease control. Tea anthracnose can easily occur in Yunnan under high-temperature and high-humidity environments, which seriously affects the ecosystem of tea gardens. Therefore, the establishment of accurate, non-destructive, and rapid prediction models has a positive impact on the conservation of biodiversity in tea plantations. Because of the linear relationship between disease occurrence and environmental conditions, the growing environmental conditions can be effectively used to predict crop diseases. Based on the climate data collected by Internet of Things devices, this study uses LASSO-COX-NOMOGRAM to analyze the expression of tea anthracrum to different degrees through Limma difference analysis, and it combines Cox single-factor analysis to study the influence mechanism of climate and environmental change on tea anthracrum. Modeling factors were screened by LASSO regression, 10-fold cross-validation and Cox multi-factor analysis were used to establish the basis of the model, the nomogram prediction model was constructed, and a Shiny- and DynNOM-visualized prediction system was built. The experimental results showed that the AUC values of the model were 0.745 and 0.731 in the training set and 0.75 and 0.747 in the verification set, respectively, when the predicted change in tea anthracnose disease risk was greater than 30% and 60%, and the calibration curve was in good agreement with the ideal curve. The accuracy of external verification was 83.3% for predicting tea anthracnose of different degrees. At the same time, compared with the traditional prediction method, the method is not affected by the difference in leaf background, which provides research potential for early prevention and phenotypic analysis, and also provides an effective means for tea disease identification and harm analysis.
Collapse
Affiliation(s)
- Rong Ye
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guoqi Shao
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Zifei Ma
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Quan Gao
- College of Big Data, Yunnan Agricultural University, Kunming 650201, China
| | - Baijuan Wang
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Tong Li
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Kozytska T, Bassiouny M, Chechet O, Ordynska D, Galante D, Neubauer H, Wareth G. Retrospective Analysis of Official Data on Anthrax in Europe with a Special Reference to Ukraine. Microorganisms 2023; 11:1294. [PMID: 37317268 DOI: 10.3390/microorganisms11051294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
Anthrax is an acute infectious zoonotic disease caused by Bacillus anthracis that mostly affects grazing livestock and wildlife. Furthermore, B. anthracis is considered one of the most important biological agents of bioterrorism that could also be potentially misused in biological weapons. The distribution of anthrax in domestic animals and wildlife in Europe with a particular focus on Ukraine as a country of war was analyzed. Between 2005 and 2022, 267 anthrax cases were registered at the World Organization of Animal Health (WOAH) in animals in Europe, including 251 cases in domestic animals and 16 in wildlife. The highest numbers of cases were recorded in 2005 and 2016 followed by 2008, and the highest numbers of registered cases were reported from Albania, Russia, and Italy. In Ukraine, anthrax is currently a sporadic infection. Since 2007, 28 notifications were registered, with isolates mainly from soil samples. The highest number of confirmed anthrax cases was registered in 2018, and Odesa, which is close to Moldova, had the highest number of cases, followed by the Cherkasy region. The presence of thousands of biothermal pits and burial grounds of fallen cattle nationwide favors the re-emergence of new foci. Most confirmed cases were in cattle; however, single cases were confirmed in dogs, horses, and pigs. Further investigation of the disease in wildlife and in environmental samples is needed. The genetic analysis of isolates, investigation of susceptibility to antimicrobial compounds, and determination of virulence and pathogenicity factors are required in this volatile region of the world for awareness raising and preparedness.
Collapse
Affiliation(s)
- Tamara Kozytska
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany
- State Research Institute for Laboratory Diagnostics and Veterinary and Sanitary Expertise, State Service of Ukraine for Food Safety and Consumer Protection, 30, Donetska St., 03151 Kyiv, Ukraine
| | - Marwa Bassiouny
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany
| | - Olha Chechet
- State Research Institute for Laboratory Diagnostics and Veterinary and Sanitary Expertise, State Service of Ukraine for Food Safety and Consumer Protection, 30, Donetska St., 03151 Kyiv, Ukraine
| | - Diana Ordynska
- State Research Institute for Laboratory Diagnostics and Veterinary and Sanitary Expertise, State Service of Ukraine for Food Safety and Consumer Protection, 30, Donetska St., 03151 Kyiv, Ukraine
| | - Domenico Galante
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Anthrax Reference Institute of Italy, Via Manfredonia 20, 71121 Foggia, Italy
| | - Heinrich Neubauer
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany
| | - Gamal Wareth
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
5
|
Bakhteeva I, Timofeev V. Some Peculiarities of Anthrax Epidemiology in Herbivorous and Carnivorous Animals. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060870. [PMID: 35743901 PMCID: PMC9224990 DOI: 10.3390/life12060870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Anthrax is an especially dangerous zooanthroponosis caused by the Gram-positive spore-forming bacterium Bacillus anthracis. A notable feature of this disease is the difference in susceptibility to it among different groups of animals. Anthrax primarily affects herbivorous ungulate mammals; they are easily infected, and their disease often leads to rapid, even sudden, death. However, predators and scavengers are extremely resistant to anthrax, and if they become infected, they usually become mildly ill. As the result of the increased sensitivity of ungulates to anthrax and the possibility of disease transmission from them to humans, most studies of anthrax have focused on the diagnosis, prevention, and treatment of infection in farm animals and humans. The issues of anthrax in other animals, such as predators, and the peculiarities of anthrax epidemiology in wild ungulates have not been sufficiently detailed in the literature. In this article, we provide a review of literature sources that describe the differential susceptibility to infection of various groups of animals to anthrax and some epidemiological features of anthrax in animals that are not the main hosts of B. anthracis.
Collapse
|
6
|
Yudianingtyas DW, Sumiarto B, Susetya H, Salman M, Djatmikowati TF, Haeriah H, Rahman A, Mangidi R. Identification of the molecular characteristics of Bacillus anthracis (1982-2020) isolates in East Indonesia using multilocus variable-number tandem repeat analysis. Vet World 2022; 15:953-961. [PMID: 35698492 PMCID: PMC9178602 DOI: 10.14202/vetworld.2022.953-961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Aim: Anthrax is one of the endemic strategic diseases in East Indonesia, particularly in the provinces of South Sulawesi, West Sulawesi, Gorontalo, East Nusa Tenggara, and West Nusa Tenggara. Anthrax is an important disease due to its zoonotic and economic impact on the livestock industry. This study aimed to identify the molecular characteristics of Bacillus anthracis in East Indonesia using multilocus variable-number tandem repeat (VNTR) analysis (MLVA). Materials and Methods: Isolates were obtained from an investigation of anthrax outbreaks in five provinces of East Indonesia from 1982 to 2020. Conventional polymerase chain reaction for B. anthracis was used to identify MLVA-8. Deoxyribonucleic acid sequencing analysis was based on MLVA-8 primers for VNTR identification of the phylogenetic relationship among 24 isolates of B. anthracis obtained from 17 distinct districts/cities in East Indonesia. Tandem Repeats Finder was used for VNTR identification, and Molecular Evolutionary Genetics Analysis X was used to construct phylogenetic analysis. Results: In this study, 24 isolates were classified as genotype or lineage A. There were four subgroups of B. anthracis circulating in East Indonesia based on eight molecular marker loci sequence results. Conclusion: The findings of this study show that MLVA-8 typing might be useful as a subtyping tool for the epidemiological investigation of identical genotypes and low genetic diversity of B. anthracis. No other lineage of B. anthracis was circulating in East Indonesia. Other molecular methods are needed, such as extended MLVA, whole-genome sequencing, and canonical single-nucleotide polymorphism, for a more precise study of B. anthracis genetic diversity.
Collapse
Affiliation(s)
- D. W. Yudianingtyas
- Doctoral Study Program, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; Department of Epidemiology and Veterinary Information, Disease Investigation Centre Maros, Directorate General of Livestock Services and Animal Health, Ministry of Agriculture, The Republic of Indonesia, Indonesia
| | - B. Sumiarto
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - H. Susetya
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mo Salman
- Department of of Clinical Sciences, Animal Population Health Institute, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, United States of America
| | - T. F. Djatmikowati
- Bacteriology laboratory, Disease Investigation Centre Maros, Directorate General of Livestock Services and Animal Health, Ministry of Agriculture, Indonesia, The Republic of Indonesia, Indonesia
| | - Haeriah Haeriah
- Bacteriology laboratory, Disease Investigation Centre Maros, Directorate General of Livestock Services and Animal Health, Ministry of Agriculture, Indonesia, The Republic of Indonesia, Indonesia
| | - Abdul Rahman
- Bacteriology laboratory, Disease Investigation Centre Maros, Directorate General of Livestock Services and Animal Health, Ministry of Agriculture, Indonesia, The Republic of Indonesia, Indonesia
| | - R. Mangidi
- Disease Investigation Centre Maros, Directorate General of Livestock Services and Animal Health, Ministry of Agriculture, The Republic of Indonesia, Indonesia
| |
Collapse
|
7
|
Brangsch H, Golovko A, Pinchuk N, Deriabin O, Kyselova T, Linde J, Melzer F, Elschner MC. Molecular Typing of Ukrainian Bacillus anthracis Strains by Combining Whole-Genome Sequencing Techniques. Microorganisms 2022; 10:microorganisms10020461. [PMID: 35208915 PMCID: PMC8875922 DOI: 10.3390/microorganisms10020461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Anthrax is a recurrent zoonosis in the Ukraine with outbreaks occurring repeatedly in certain areas. For determining whether several Bacillus anthracis genotypes are circulating in this region, four strains from various sources isolated from different regions of the Ukraine were investigated. By combining long- and short-read next-generation sequencing techniques, highly accurate genomes were reconstructed, enabling detailed in silico genotyping. Thus, the strains could be assigned to the Tsiankovskii subgroup of the “TransEurAsia” clade, which is commonly found in this region. Their high genetic similarity suggests that the four strains are members of the endemic population whose progenitor was once introduced in the Ukraine and bordering regions. This study provides information on B. anthracis strains from a region where there is little knowledge of the local population, thereby adding to the picture of global B. anthracis genotype distribution. We also emphasize the importance of surveillance and prevention methods regarding anthrax outbreaks, as other studies predicted a higher number of cases in the future due to global warming.
Collapse
Affiliation(s)
- Hanka Brangsch
- Institute for Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany; (J.L.); (F.M.); (M.C.E.)
- Correspondence:
| | - Anatolii Golovko
- Department of Bacteriological Research and Quality Control of Veterinary Immunobiological Preparations, SSCIBSM, 30, Donetskaya St., 03151 Kyiv, Ukraine; (A.G.); (N.P.); (O.D.); (T.K.)
| | - Nataliia Pinchuk
- Department of Bacteriological Research and Quality Control of Veterinary Immunobiological Preparations, SSCIBSM, 30, Donetskaya St., 03151 Kyiv, Ukraine; (A.G.); (N.P.); (O.D.); (T.K.)
| | - Oleg Deriabin
- Department of Bacteriological Research and Quality Control of Veterinary Immunobiological Preparations, SSCIBSM, 30, Donetskaya St., 03151 Kyiv, Ukraine; (A.G.); (N.P.); (O.D.); (T.K.)
| | - Tetiana Kyselova
- Department of Bacteriological Research and Quality Control of Veterinary Immunobiological Preparations, SSCIBSM, 30, Donetskaya St., 03151 Kyiv, Ukraine; (A.G.); (N.P.); (O.D.); (T.K.)
| | - Jörg Linde
- Institute for Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany; (J.L.); (F.M.); (M.C.E.)
| | - Falk Melzer
- Institute for Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany; (J.L.); (F.M.); (M.C.E.)
| | - Mandy Carolina Elschner
- Institute for Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany; (J.L.); (F.M.); (M.C.E.)
| |
Collapse
|
8
|
Sequence Variability of pXO1-Located Pathogenicity Genes of Bacillus anthracis Natural Strains of Different Geographic Origin. Pathogens 2021; 10:pathogens10121556. [PMID: 34959512 PMCID: PMC8703917 DOI: 10.3390/pathogens10121556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022] Open
Abstract
The main pathogenic factor of Bacillus anthracis is a three-component toxin encoded by the pagA, lef, and cya genes, which are located on the pXO1 plasmid. The atxA gene, which encodes the primary regulator of pathogenicity factor expression, is located on the same plasmid. In this work, we evaluated the polymorphism of the pagA, lef, cya, and atxA genes for 85 B. anthracis strains from different evolutionary lineages and canSNP groups. We have found a strong correlation of 19 genotypes with the main evolutionary lineages, but the correlation with the canSNP group of the strain was not as strong. We have detected several genetic markers indicating the geographical origin of the strains, for example, their source from the steppe zone of the former USSR. We also found that strains of the B.Br.001/002 group caused an anthrax epidemic in Russia in 2016 and strains isolated during paleontological excavations in the Russian Arctic have the same genotype as the strains of the B.Br.CNEVA group circulating in Central Europe. This data could testify in favor of the genetic relationship of these two groups of strains and hypothesize the ways of distribution of their ancestral forms between Europe and the Arctic.
Collapse
|
9
|
A Whole-Genome-Based Gene-by-Gene Typing System for Standardized High-Resolution Strain Typing of Bacillus anthracis. J Clin Microbiol 2021; 59:e0288920. [PMID: 33827898 PMCID: PMC8218748 DOI: 10.1128/jcm.02889-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whole-genome sequencing (WGS) has been established for bacterial subtyping and is regularly used to study pathogen transmission, to investigate outbreaks, and to perform routine surveillance. Core-genome multilocus sequence typing (cgMLST) is a bacterial subtyping method that uses WGS data to provide a high-resolution strain characterization. This study aimed at developing a novel cgMLST scheme for Bacillus anthracis, a notorious pathogen that causes anthrax in livestock and humans worldwide. The scheme comprises 3,803 genes that were conserved in 57 B. anthracis genomes spanning the whole phylogeny. The scheme has been evaluated and applied to 584 genomes from 50 countries. On average, 99.5% of the cgMLST targets were detected. The cgMLST results confirmed the classical canonical single-nucleotide-polymorphism (SNP) grouping of B. anthracis into major clades and subclades. Genetic distances calculated based on cgMLST were comparable to distances from whole-genome-based SNP analysis with similar phylogenetic topology and comparable discriminatory power. Additionally, the application of the cgMLST scheme to anthrax outbreaks from Germany and Italy led to a definition of a cutoff threshold of five allele differences to trace epidemiologically linked strains for cluster typing and transmission analysis. Finally, the association of two clusters of B. anthracis with human cases of injectional anthrax in four European countries was confirmed using cgMLST. In summary, this study presents a novel cgMLST scheme that provides high-resolution strain genotyping for B. anthracis. This scheme can be used in parallel with SNP typing methods to facilitate rapid and harmonized interlaboratory comparisons, essential for global surveillance and outbreak analysis. The scheme is publicly available for application by users, including those with little bioinformatics knowledge.
Collapse
|
10
|
Pisarenko SV, Eremenko EI, Kovalev DA, Ryazanova AG, Evchenko AY, Aksenova LY, Dugarzhapova ZF, Kravets EV, Semenova OV, Bobrysheva OV, Balakhonov SV, Kulichenko AN. Molecular genotyping of 15 B. anthracis strains isolated in Eastern Siberia and Far East. Mol Phylogenet Evol 2021; 159:107116. [PMID: 33609703 DOI: 10.1016/j.ympev.2021.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 11/15/2022]
Abstract
Bacillus anthracis is a pathogenic bacterium, which causes anthrax disease. The ability of this bacterium to form spores, which can be preserved in soil for decades and cause outbreaks later on, makes this pathogen a serious problem for veterinary and health services of many countries. Siberia is one of the most anthrax-influenced regions of Russia. In this research we report on the results of genotyping based on whole genome SNP analysis of 15 strains, isolated on the territory of Eastern Siberia and the Far East in 1956-2018. In this research, we sequenced 15 genomes of B. anthracis strains isolated from infected humans and animals, and from soil samples from the territory of Eastern Siberia and the Far East in the period from 1956 to 2018. We used genomic sequences obtained in this study and 219 B. anthracis genomes available in the international GenBank database to perform a comparative analysis. As a result we detected 6400 chromosomal SNPs which allowed to differentiate the studied strains. We built phylogenetic reconstruction of the global B. anthracis population based on the detected SNPs using the Maximum Likelihood Method and described genetic diversity of the strains isolated on the territory of Eastern Siberia and the Far East. Strains, isolated on this territory from 1956 to 2018 belong to 5 different genetic groups: "Ames", "STI", "Tsiankovskii", "Siberia" and "Asia". The greatest diversity of the strains is registered for two regions of the southern part of Eastern Siberia - Tyva and Buryatia. This research expands current understanding of genetic diversity of B. anthracis strains circulating on the territory of Russia.
Collapse
Affiliation(s)
- Sergey V Pisarenko
- Stavropol Research Anti-Plague Institute, 355035 Stavropol, Russian Federation.
| | - Eugene I Eremenko
- Stavropol Research Anti-Plague Institute, 355035 Stavropol, Russian Federation.
| | - Dmitry A Kovalev
- Stavropol Research Anti-Plague Institute, 355035 Stavropol, Russian Federation.
| | - Alla G Ryazanova
- Stavropol Research Anti-Plague Institute, 355035 Stavropol, Russian Federation.
| | - Anna Yu Evchenko
- Stavropol Research Anti-Plague Institute, 355035 Stavropol, Russian Federation.
| | | | - Zorigma F Dugarzhapova
- Irkutsk Antiplague Research Institute of Siberia and Far East, 664047 Irkutsk, Russian Federation.
| | - Elena V Kravets
- Irkutsk Antiplague Research Institute of Siberia and Far East, 664047 Irkutsk, Russian Federation.
| | - Olga V Semenova
- Stavropol Research Anti-Plague Institute, 355035 Stavropol, Russian Federation.
| | - Olga V Bobrysheva
- Stavropol Research Anti-Plague Institute, 355035 Stavropol, Russian Federation.
| | - Sergei V Balakhonov
- Irkutsk Antiplague Research Institute of Siberia and Far East, 664047 Irkutsk, Russian Federation.
| | | |
Collapse
|
11
|
Muller J, Mohammad I, Warner S, Paskin R, Constable F, Fegan M. Genetic Diversity of Australian Bacillus anthracis Isolates Revealed by Multiple-Locus Variable-Number Tandem Repeat Analysis. Microorganisms 2020; 8:microorganisms8060886. [PMID: 32545283 PMCID: PMC7355618 DOI: 10.3390/microorganisms8060886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022] Open
Abstract
Outbreaks of anthrax occur sporadically in Australia and most commonly in the "anthrax belt", a region which extends from southern Queensland through the centre of New South Wales and into northern Victoria. Little is known about the epidemiological links between Bacillus anthracis isolates taken from different outbreaks and the diversity of strains within Australia. We used multiple-locus variable-number tandem repeat analysis employing 25 markers (MLVA25) to genotype 99 B. anthracis isolates from an archival collection of Australian isolates. MLVA25 genotyping revealed eight unique genotypes which clustered within the previously defined A3 genotype of B. anthracis. Genotyping of B. anthracis strains from outbreaks of disease in Victoria identified the presence of multiple genotypes associated with these outbreaks. The geographical distribution of genotypes within Australia suggests that a single genotype was introduced into the eastern states of Australia, followed by the spread and localised differentiation of the pathogen (MLVA25 genotypes MG1-MG6) throughout the anthrax belt. In contrast, unexplained occurrences of disease in areas outside of this anthrax belt which are associated with different genotypes, (MLVA25 genotypes MG7 and MG8) indicate separate introductions of B. anthracis into Australia.
Collapse
Affiliation(s)
- Janine Muller
- Agriculture Victoria, Department of Jobs Precincts and Regions, Agribio, La Trobe University, 5 Ring Road, Bundoora, Victoria 3083, Australia; (I.M.); (F.C.); (M.F.)
- Correspondence:
| | - Ilhan Mohammad
- Agriculture Victoria, Department of Jobs Precincts and Regions, Agribio, La Trobe University, 5 Ring Road, Bundoora, Victoria 3083, Australia; (I.M.); (F.C.); (M.F.)
| | - Simone Warner
- Environment Protection Authority Victoria, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Victoria 3085, Australia;
| | - Roger Paskin
- OMNI Animal Health Consultancy, 6/35 McLaren Street, Mount Barker, South Australia 5251, Australia;
| | - Fiona Constable
- Agriculture Victoria, Department of Jobs Precincts and Regions, Agribio, La Trobe University, 5 Ring Road, Bundoora, Victoria 3083, Australia; (I.M.); (F.C.); (M.F.)
| | - Mark Fegan
- Agriculture Victoria, Department of Jobs Precincts and Regions, Agribio, La Trobe University, 5 Ring Road, Bundoora, Victoria 3083, Australia; (I.M.); (F.C.); (M.F.)
| |
Collapse
|