1
|
Marzano V, Levi Mortera S, Putignani L. Insights on Wet and Dry Workflows for Human Gut Metaproteomics. Proteomics 2024:e202400242. [PMID: 39740098 DOI: 10.1002/pmic.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
The human gut microbiota (GM) is a community of microorganisms that resides in the gastrointestinal (GI) tract. Recognized as a critical element of human health, the functions of the GM extend beyond GI well-being to influence overall systemic health and susceptibility to disease. Among the other omic sciences, metaproteomics highlights additional facets that make it a highly valuable discipline in the study of GM. Indeed, it allows the protein inventory of complex microbial communities. Proteins with associated taxonomic membership and function are identified and quantified from their constituent peptides by liquid chromatography coupled to mass spectrometry analyses and by querying specific databases (DBs). The aim of this review was to compile comprehensive information on metaproteomic studies of the human GM, with a focus on the bacterial component, to assist newcomers in understanding the methods and types of research conducted in this field. The review outlines key steps in a metaproteomic-based study, such as protein extraction, DB selection, and bioinformatic workflow. The importance of standardization is emphasized. In addition, a list of previously published studies is provided as hints for researchers interested in investigating the role of GM in health and disease states.
Collapse
Affiliation(s)
- Valeria Marzano
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
2
|
Duong VA, Enkhbayar A, Bhasin N, Senavirathna L, Preisner EC, Hoffman KL, Shukla R, Jenq RR, Cheng K, Bronner MP, Figeys D, Britton RA, Pan S, Chen R. A complementary metaproteomic approach to interrogate microbiome cultivated from clinical colon biopsies. Proteomics 2024; 24:e2400078. [PMID: 38824665 PMCID: PMC11576236 DOI: 10.1002/pmic.202400078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
The human gut microbiome plays a vital role in preserving individual health and is intricately involved in essential functions. Imbalances or dysbiosis within the microbiome can significantly impact human health and are associated with many diseases. Several metaproteomics platforms are currently available to study microbial proteins within complex microbial communities. In this study, we attempted to develop an integrated pipeline to provide deeper insights into both the taxonomic and functional aspects of the cultivated human gut microbiomes derived from clinical colon biopsies. We combined a rapid peptide search by MSFragger against the Unified Human Gastrointestinal Protein database and the taxonomic and functional analyses with Unipept Desktop and MetaLab-MAG. Across seven samples, we identified and matched nearly 36,000 unique peptides to approximately 300 species and 11 phyla. Unipept Desktop provided gene ontology, InterPro entries, and enzyme commission number annotations, facilitating the identification of relevant metabolic pathways. MetaLab-MAG contributed functional annotations through Clusters of Orthologous Genes and Non-supervised Orthologous Groups categories. These results unveiled functional similarities and differences among the samples. This integrated pipeline holds the potential to provide deeper insights into the taxonomy and functions of the human gut microbiome for interrogating the intricate connections between microbiome balance and diseases.
Collapse
Affiliation(s)
- Van-An Duong
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School/ The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Altai Enkhbayar
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Nobel Bhasin
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA Baylor College of Medicine, Houston, TX 77030
| | - Lakmini Senavirathna
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School/ The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Eva C Preisner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kristi L Hoffman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richa Shukla
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA Baylor College of Medicine, Houston, TX 77030
| | - Robert R Jenq
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kai Cheng
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mary P Bronner
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School/ The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Ru Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
3
|
Zhang B, Feng S, Parajuli M, Xiong Y, Pan C, Guo X. SEMQuant: Extending Sipros-Ensemble with Match-Between-Runs for Comprehensive Quantitative Metaproteomics. BIOINFORMATICS RESEARCH AND APPLICATIONS : ... INTERNATIONAL SYMPOSIUM, ISBRA ... PROCEEDINGS. ISBRA (CONFERENCE) 2024; 14956:102-115. [PMID: 39465129 PMCID: PMC11507799 DOI: 10.1007/978-981-97-5087-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Metaproteomics, utilizing high-throughput LC-MS, offers a profound understanding of microbial communities. Quantitative metaproteomics further enriches this understanding by measuring relative protein abundance and revealing dynamic changes under different conditions. However, the challenge of missing peptide quantification persists in metaproteomics analysis, particularly in data-dependent acquisition mode, where high-intensity precursors for MS2 scans are selected. To tackle this issue, the match-between-runs (MBR) technique is used to transfer peptides between LC-MS runs. Inspired by the benefits of MBR and the need for streamlined metaproteomics data analysis, we developed SEMQuant, an end-to-end software integrating Sipros-Ensemble's robust peptide identifications with IonQuant's MBR function. The experiments show that SEMQuant consistently obtains the highest or second highest number of quantified proteins with notable precision and accuracy. This demonstrates SEMQuant's effectiveness in conducting comprehensive and accurate quantitative metaproteomics analyses across diverse datasets and highlights its potential to propel advancements in microbial community studies. SEMQuant is freely available under the GNU GPL license at https://github.com/Biocomputing-Research-Group/SEMQuant.
Collapse
Affiliation(s)
- Bailu Zhang
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76207, USA
| | - Shichao Feng
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76207, USA
| | - Manushi Parajuli
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76207, USA
| | - Yi Xiong
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
| | - Chongle Pan
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
- School of Computer Science, University of Oklahoma, Norman, OK 73019, USA
| | - Xuan Guo
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76207, USA
| |
Collapse
|
4
|
Zhang Y, Bai Y, Wang Z, Ye H, Han D, Zhao J, Wang J, Li D. Effects of Resistant Starch Infusion, Solely and Mixed with Xylan or Cellulose, on Gut Microbiota Composition in Ileum-Cannulated Pigs. Microorganisms 2024; 12:356. [PMID: 38399760 PMCID: PMC10893309 DOI: 10.3390/microorganisms12020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Fermentation of dietary fiber (DF) is beneficial for gut health, but its prebiotic effects are often impeded in the distal large intestine because of the fast degradation of fermentable substrates. One way to enhance the prebiotic effect of DF is to deliver fibers to the lower parts of the gut, which can be achieved by mixing different kinds of fiber. Therefore, in the present study, an ileum-cannulated pig model was employed to investigate the fermentation influence in the large intestine by infusing resistant starch solely (RS, fast fermentable fiber) and mixing with other fibers (xylan or cellulose). Twenty-four ileum-cannulated growing pigs were divided into four groups: one control group receiving saline ileal infusions and three experimental groups infused with RS, RS with xylan, or RS with cellulose. Fecal and plasma samples were analyzed for gut microbiota composition, short-chain fatty acids (SCFAs), and blood biochemistry. Results indicated no significant differences between the RS and control group for the microbiome and SCFA concentration (p > 0.05). However, RS combined with fibers, particularly xylan, resulted in enhanced and prolonged fermentation, marked by an increase in Blautia and higher lactate and acetate production (p < 0.05). In contrast, RS with cellulose infusion enriched bacterial diversity in feces (p < 0.05). Blood biochemistry parameters showed no significant differences across groups (p > 0.05), though a trend of increased glucose levels was noted in the treatment groups (p < 0.1). Overall, RS alone had a limited impact on the distal hindgut microbiota due to rapid fermentation in the proximal gut, whereas combining RS with other fibers notably improved gut microecology by extending the fermentation process.
Collapse
Affiliation(s)
- Yaowen Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Yu Bai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Hao Ye
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Defa Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Gut Microbiome Proteomics in Food Allergies. Int J Mol Sci 2023; 24:ijms24032234. [PMID: 36768555 PMCID: PMC9917015 DOI: 10.3390/ijms24032234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Food allergies (FA) have dramatically increased in recent years, particularly in developed countries. It is currently well-established that food tolerance requires the strict maintenance of a specific microbial consortium in the gastrointestinal (GI) tract microbiome as alterations in the gut microbiota can lead to dysbiosis, causing inflammation and pathogenic intestinal conditions that result in the development of FA. Although there is currently not enough knowledge to fully understand how the interactions between gut microbiota, host responses and the environment cause food allergies, recent advances in '-omics' technologies (i.e., proteomics, genomics, metabolomics) and in approaches involving systems biology suggest future headways that would finally allow the scientific understanding of the relationship between gut microbiome and FA. This review summarizes the current knowledge in the field of FA and insights into the future advances that will be achieved by applying proteomic techniques to study the GI tract microbiome in the field of FA and their medical treatment. Metaproteomics, a proteomics experimental approach of great interest in the study of GI tract microbiota, aims to analyze and identify all the proteins in complex environmental microbial communities; with shotgun proteomics, which uses liquid chromatography (LC) for separation and tandem mass spectrometry (MS/MS) for analysis, as it is the most promising technique in this field.
Collapse
|
6
|
Xu H, Zhang L, Feng X, Yang Q, Zheng K, Duan S, Cheng L. Metagenomic and proteomic analysis of bacterial retting community and proteome profile in the degumming process of kenaf bast. BMC PLANT BIOLOGY 2022; 22:516. [PMID: 36333799 PMCID: PMC9636830 DOI: 10.1186/s12870-022-03890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Data on the microbial community and functional proteins associated with degumming in kenaf remains scant. Here, we analyzed the microbial communities associated with kenaf (Hibiscus cannabinus) bast fibers during retting to identify potential candidate degumming bacteria. Retting liquids were collected and analyzed at 0 days, 10 days, and 34 days and then evaluated the yield and quality of kenaf fiber at the different retting times. Besides, the microbial communities were characterized using metagenomic and proteomic analysis by LC-MS/MS technology. RESULTS The data showed that increase in the retting time significantly improves the softness, dispersion, and fiber whiteness of the kenaf fiber. The relative abundance of Acinetobacter increased from 2.88% at the baseline to 6.64% at the 34th retting. On the other hand, some members of Clostridium were reduced from 3% at the baseline to 2% at the 34th retting. Analysis of carbohydrate active enzymes showed constant changes in the utilization of carbohydrates. Besides, benzoquinone reductase, cellobiose dehydrogenase, glucose 1-oxidase, aryl alcohol oxidase and alcohol oxidase were the top five most abundant enzymes in the retting liquids. This present results demonstrated that the expressions of B7GYR8, Q6RYW5 and Q6FFK2 proteins were suppressed in Acinetobacter with the retting time. On the contrary, P05149 was upregulated with the retting time. In Clostridium, P37698, P52040 and P54937 proteins were upregulated with the retting time. CONCLUSION In addition, bacteria Acinetobacter and Clostridium might be playing important roles in the kenaf degumming process. Similarly, up-regulation of P37698, P52040 and P54937 proteins is an important manifestation and mediates important roles in the degumming process.
Collapse
Affiliation(s)
- Huan Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, 348 West XianJiahu Road, Changsha, China
| | - Lixia Zhang
- Xinyang City Academy of Agricultural Sciences, 20 Minquan South Street, Shihe District, Xinyang, Henan, China
| | - Xiangyuan Feng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, 348 West XianJiahu Road, Changsha, China
| | - Qi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, 348 West XianJiahu Road, Changsha, China
| | - Ke Zheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, 348 West XianJiahu Road, Changsha, China
| | - Shengwen Duan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, 348 West XianJiahu Road, Changsha, China.
| | - Lifeng Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, 348 West XianJiahu Road, Changsha, China.
| |
Collapse
|
7
|
Ramos-Lopez O, Martinez JA, Milagro FI. Holistic Integration of Omics Tools for Precision Nutrition in Health and Disease. Nutrients 2022; 14:4074. [PMID: 36235725 PMCID: PMC9572439 DOI: 10.3390/nu14194074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
The combination of multiple omics approaches has emerged as an innovative holistic scope to provide a more comprehensive view of the molecular and physiological events underlying human diseases (including obesity, dyslipidemias, fatty liver, insulin resistance, and inflammation), as well as for elucidating unique and specific metabolic phenotypes. These omics technologies include genomics (polymorphisms and other structural genetic variants), epigenomics (DNA methylation, histone modifications, long non-coding RNA, telomere length), metagenomics (gut microbiota composition, enterotypes), transcriptomics (RNA expression patterns), proteomics (protein quantities), and metabolomics (metabolite profiles), as well as interactions with dietary/nutritional factors. Although more evidence is still necessary, it is expected that the incorporation of integrative omics could be useful not only for risk prediction and early diagnosis but also for guiding tailored dietary treatments and prognosis schemes. Some challenges include ethical and regulatory issues, the lack of robust and reproducible results due to methodological aspects, the high cost of omics methodologies, and high-dimensional data analyses and interpretation. In this review, we provide examples of system biology studies using multi-omics methodologies to unravel novel insights into the mechanisms and pathways connecting the genotype to clinically relevant traits and therapy outcomes for precision nutrition applications in health and disease.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
| | - J. Alfredo Martinez
- Precision Nutrition and Cardiometabolic Health, IMDEA Food Institute, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Fermin I. Milagro
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
8
|
Guthrie L, Spencer SP, Perelman D, Van Treuren W, Han S, Yu FB, Sonnenburg ED, Fischbach MA, Meyer TW, Sonnenburg JL. Impact of a 7-day homogeneous diet on interpersonal variation in human gut microbiomes and metabolomes. Cell Host Microbe 2022; 30:863-874.e4. [PMID: 35643079 PMCID: PMC9296065 DOI: 10.1016/j.chom.2022.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/17/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023]
Abstract
Gut microbiota metabolism of dietary compounds generates a vast array of microbiome-dependent metabolites (MDMs), which are highly variable between individuals. The uremic MDMs (uMDMs) phenylacetylglutamine (PAG), p-cresol sulfate (PCS), and indoxyl sulfate (IS) accumulate during renal failure and are associated with poor outcomes. Targeted dietary interventions may reduce toxic MDM generation; however, it is unclear if inter-individual differences in diet or gut microbiome dominantly contribute to MDM variance. Here, we use a 7-day homogeneous average American diet to standardize dietary precursor availability in 21 healthy individuals. During dietary homogeneity, the coefficient of variation in PAG, PCS, and IS (primary outcome) did not decrease, nor did inter-individual variation in most identified metabolites; other microbiome metrics showed no or modest responses to the intervention. Host identity and age are dominant contributors to variability in MDMs. These results highlight the potential need to pair dietary modification with microbial therapies to control MDM profiles.
Collapse
Affiliation(s)
- Leah Guthrie
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sean Paul Spencer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dalia Perelman
- Stanford Prevention Research Center, Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Will Van Treuren
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shuo Han
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Erica D Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael A Fischbach
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; ChEM-H, Stanford University, Stanford, CA 94305, USA; Chan-Zuckerburg Biohub, San Francisco, CA 94158, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Timothy W Meyer
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan-Zuckerburg Biohub, San Francisco, CA 94158, USA; Center for Human Microbiome Studies, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Shao J, Ge T, Wei Y, Zhou Y, Shi M, Liu H, Chen Z, Xia Y. Co-interventions with Clostridium butyricum and soluble dietary fiber targeting the gut microbiota improve MAFLD via the Acly/Nrf2/NF-κB signaling pathway. Food Funct 2022; 13:5807-5819. [PMID: 35543143 DOI: 10.1039/d1fo04224f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose: The pathogenesis of metabolic associated fatty liver disease (MAFLD) is complex. Lipid metabolic disorder, chronic inflammation, and oxidative stress are the core events for MAFLD. Dietary intervention is an important treatment strategy for preventing the onset and progression of MAFLD. Clostridium butyricum (CB) and soluble dietary fiber (SDF) are often considered beneficial for health. We explored how two microbiota-targeted interventions (SDF and CB) influence the hepatic immune system, oxidative stress, and lipid metabolism in MAFLD mice. Methods: To explore the role of SDF and CB in MAFLD, we generated MAFLD mouse models by feeding C57BL/6 mice with a high-fat diet (HFD). After 8 weeks of intervention, we measured immune cell function, lipid metabolism, and oxidative stress levels in the livers of mice. Results: Single intervention with SDF or CB was not effective in improving MAFLD; however, co-interventions with SDF and CB increased microbiota diversity and decreased inflammation, oxidative stress, and lipid synthesis. Moreover, we determined that co-intervention with SDF and CB mediated fatty acid oxidation by activating the Acly/Nrf2/NF-κB signaling pathway. Most importantly, co-intervention exerted anti-inflammatory effects by inhibiting the differentiation of macrophages into pro-inflammatory M1 macrophages. Conclusion: This study show that co-intervention with SDF and CB can improve MAFLD, and co-intervention with SDF and CB are suggested to be potential gut microbiota modulators and therapeutic substances for MAFLD.
Collapse
Affiliation(s)
- Junwei Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, China.
| | - Tiantian Ge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, China.
| | - Yingliang Wei
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Yuhan Zhou
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Mengyuan Shi
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Huiyuan Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, China.
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Karaduta O, Dvanajscak Z, Zybailov B. Metaproteomics-An Advantageous Option in Studies of Host-Microbiota Interaction. Microorganisms 2021; 9:microorganisms9050980. [PMID: 33946610 PMCID: PMC8147213 DOI: 10.3390/microorganisms9050980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Gut microbiome contributes to host health by maintaining homeostasis, increasing digestive efficiency, and facilitating the development of the immune system. Manipulating gut microbiota is being recognized as a therapeutic target to manage various chronic diseases. The therapeutic manipulation of the intestinal microbiome is achieved through diet modification, the administration of prebiotics, probiotics, or antibiotics, and more recently, fecal microbiome transplantation (FMT). In this opinion paper, we give a perspective on the current status of application of multi-omics technologies in the analysis of host-microbiota interactions. The aim of this paper was to highlight the strengths of metaproteomics, which integrates with and often relies on other approaches.
Collapse
Affiliation(s)
- Oleg Karaduta
- Department of Biochemistry and Molecular Biology, UAMS, Little Rock, AR 72205, USA;
- Correspondence: ; Tel.: +1-501-251-5381
| | | | - Boris Zybailov
- Department of Biochemistry and Molecular Biology, UAMS, Little Rock, AR 72205, USA;
| |
Collapse
|
11
|
Brennan L, de Roos B. Nutrigenomics: lessons learned and future perspectives. Am J Clin Nutr 2021; 113:503-516. [PMID: 33515029 DOI: 10.1093/ajcn/nqaa366] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
The omics technologies of metabolomics, transcriptomics, proteomics, and metagenomics are playing an increasingly important role in nutrition science. With the emergence of the concept of precision nutrition and the need to understand individual responses to dietary interventions, it is an opportune time to examine the impact of these tools to date in human nutrition studies. Advances in our mechanistic understanding of dietary interventions were realized through incorporation of metabolomics, proteomics, and, more recently, metagenomics. A common observation across the studies was the low intra-individual variability of the omics measurements and the high inter-individual variation. Harnessing this data for use in the development of precision nutrition will be important. Metabolomics in particular has played a key role in the development of biomarkers of food intake in an effort to enhance the accuracy of dietary assessments. Further work is needed to realize the full potential of such biomarkers and to demonstrate integration with current strategies, with the goal of overcoming the well-established limitations of self-reported approaches. Although many of the nutrigenomic studies performed to date were labelled as proof-of-concept or pilot studies, there is ample evidence to support the use of these technologies in nutrition science. Incorporating omic technologies from the start of study designs will ensure that studies are sufficiently powered for such data. Furthermore, multi-disciplinary collaborations are likely to become even more important to aid analyses and interpretation of the data.
Collapse
Affiliation(s)
- Lorraine Brennan
- Institute of Food and Health and Conway Institute, University College Dublin (UCD) School of Agriculture and Food Science, UCD, Belfield, Dublin, Ireland
| | - Baukje de Roos
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
12
|
Gathercole JL, Grosvenor AJ, Lee E, Thomas A, Mitchell CJ, Zeng N, D'Souza RF, Ramzan F, Sharma P, Knowles SO, Roy NC, Sjödin A, Wagner KH, Milan AM, Mitchell SM, Cameron-Smith D. Analysis of Human Faecal Host Proteins: Responsiveness to 10-Week Dietary Intervention Modifying Dietary Protein Intake in Elderly Males. Front Nutr 2021; 7:595905. [PMID: 33521034 PMCID: PMC7838370 DOI: 10.3389/fnut.2020.595905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Faecal proteomics targeting biomarkers of immunity and inflammation have demonstrated clinical application for the identification of changes in gastrointestinal function. However, there are limited comprehensive analyses of the host faecal proteome and how it may be influenced by dietary factors. To examine this, the Homo sapiens post-diet proteome of older males was analysed at the completion of a 10-week dietary intervention, either meeting the minimum dietary protein recommendations (RDA; n = 9) or twice the recommended dietary allowance (2RDA, n = 10). The host faecal proteome differed markedly between individuals, with only a small subset of proteins present in ≥ 60% of subjects (14 and 44 proteins, RDA and 2RDA, respectively, with only 7 common to both groups). No differences were observed between the diet groups on the profiles of host faecal proteins. Faecal proteins were detected from a wide range of protein classes, with high inter-individual variation and absence of obvious impact in response to diets with markedly different protein intake. This suggests that well-matched whole food diets with two-fold variation in protein intake maintained for 10 weeks have minimal impact on human faecal host proteins.
Collapse
Affiliation(s)
| | - Anita J Grosvenor
- Proteins and Metabolites Team, AgResearch, Lincoln, Christchurch, New Zealand
| | - Erin Lee
- Proteins and Metabolites Team, AgResearch, Lincoln, Christchurch, New Zealand
| | - Ancy Thomas
- Proteins and Metabolites Team, AgResearch, Lincoln, Christchurch, New Zealand
| | - Cameron J Mitchell
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Nina Zeng
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Randall F D'Souza
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Discipline of Nutrition, University of Auckland, Auckland, New Zealand
| | - Farha Ramzan
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Pankaja Sharma
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Scott O Knowles
- Food, Nutrition, and Health Team, AgResearch, Auckland University, Auckland, New Zealand
| | - Nicole C Roy
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Food, Nutrition, and Health Team, AgResearch, Auckland University, Auckland, New Zealand.,Department of Nutrition, University of Otago, Dunedin, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Anders Sjödin
- Department of Nutrition, Exercise, and Sports, Copenhagen University, Copenhagen, Denmark
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences and Research Platform Active Ageing, University of Vienna, Vienna, Austria
| | - Amber M Milan
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Food, Nutrition, and Health Team, AgResearch, Auckland University, Auckland, New Zealand
| | - Sarah M Mitchell
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Agency for Science, Technology, and Research, Singapore Institute for Clinical Sciences, Singapore, Singapore
| |
Collapse
|