1
|
Pallós P, Gajdács M, Urbán E, Szabados Y, Szalai K, Hevesi L, Horváth A, Kuklis A, Morjaria D, Iffat W, Hetta HF, Piredda N, Donadu MG. Characterization of antibiotic and disinfectant susceptibility in biofilm-forming Acinetobacter baumannii: A focus on environmental isolates. Eur J Microbiol Immunol (Bp) 2024; 14:126-133. [PMID: 38441568 PMCID: PMC11097793 DOI: 10.1556/1886.2024.00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 05/16/2024] Open
Abstract
The clinical role of Acinetobacter baumannii has been highlighted in numerous infectious syndromes with a high mortality rate, due to the high prevalence of multidrug-resistant (MDR) isolates. The treatment and eradication of this pathogen is hindered by biofilm-formation, providing protection from noxious environmental factors and antimicrobials. The aim of this study was to assess the antibiotic susceptibility, antiseptic susceptibility and biofilm-forming capacity using phenotypic methods in environmental A. baumannii isolates. One hundred and fourteen (n = 114) isolates were collected, originating from various environmental sources and geographical regions. Antimicrobial susceptibility testing was carried out using the disk diffusion method, while antiseptic susceptibility was performed using the agar dilution method. Determination of biofilm-forming capacity was carried out using a microtiter-plate based method. Resistance in environmental A. baumannii isolates were highest for ciprofloxacin (64.03%, n = 73), levofloxacin (62.18%, n = 71) and trimethoprim-sulfamethoxazole (61.40%, n = 70), while lowest for colistin (1.75%, n = 2). Efflux pump overexpression was seen in 48.25% of isolates (n = 55), 49.12% (n = 56) were classified as MDR. 6.14% (n = 7), 9.65% (n = 11), 24.65% (n = 28) and 59.65% (n = 68) of isolates were non-biofilm producers, weak, medium, and strong biofilm producers, respectively. No significant differences were observed between non-MDR vs. MDR isolates regarding their distribution of biofilm-producers (P = 0.655). The MIC ranges for the tested antiseptics were as follows: benzalkonium chloride 16-128 μg mL-1, chlorhexidine digluconate 4-128 μg mL-1, formaldehyde 64-256 μg mL-1 and triclosan 2-16 μg mL-1, respectively. The conscientious use of antiseptics, together with periodic surveillance, is essential to curb the spread of these bacteria, and to maintain current infection prevention capabilities.
Collapse
Affiliation(s)
- Péter Pallós
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Edit Urbán
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Szigeti út 12, 7624Pécs, Hungary
| | - Yvett Szabados
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Klaudia Szalai
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Lívia Hevesi
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Anna Horváth
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Anna Kuklis
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Devina Morjaria
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Wajiha Iffat
- Department of Pharmaceutics, Dow College of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Dow University of Health Sciences, OJHA Campus, Karachi, Pakistan
| | - Helal F. Hetta
- Department of Natural Products and Alternative Medicine, Division of Microbiology and Immunology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Nicola Piredda
- Radiology Unit, Giovanni Paolo II Hospital, ASL Gallura, 07026Olbia, Italy
| | - Matthew Gavino Donadu
- Hospital Pharmacy, Giovanni Paolo II Hospital, ASL Gallura, 07026Olbia, Italy
- Department of Medicine, Surgery and Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Sassari, 07100Sassari, Italy
| |
Collapse
|
2
|
Shamkani F, Barzi SM, Badmasti F, Chiani M, Mirabzadeh E, Zafari M, Shafiei M. Enhanced anti-biofilm activity of the minocycline-and-gallium-nitrate using niosome wrapping against Acinetobacter baumannii in C57/BL6 mouse pneumonia model. Int Immunopharmacol 2023; 115:109551. [PMID: 36621329 DOI: 10.1016/j.intimp.2022.109551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 01/09/2023]
Abstract
Acinetobacter baumannii is a worldwide health issue in terms of its high antibiotic resistance and ability to form biofilms. Nanoparticles (NPs) with high biocompatibility, high penetrating ability, and low medication dose can successfully treat the antibiotic-resistant infections. In this research, the anti-biofilm activity of niosomes containing minocycline and gallium nitrate (GaN) against A. baumannii biofilm was determined. In order to improve their anti-biofilm properties, minocycline and GaN were encapsulated in niosomes as biocompatible drug carriers. The niosomes' size, zeta potential, shape, stability, drug entrapment efficacy, drug release pattern and antibacterial activity were assessed. Several clinical samples were isolated from the lungs of patients hospitalized at Loghman hospital, Tehran, Iran. The biofilm formation of most lethal clinical isolates of A. baumannii was analyzed. The pneumonia model was generated by intranasally administering A. baumannii suspension to anesthetized mice whose immune systems was compromised twice by cyclophosphamide. Lung infection of the mouse with A. baumannii was confirmed using PCR. After treatment, the lungs were excised under sterile conditions and stained with hematoxylin and eosin (H&E) to determine histological symptoms, inflammation and intercellular secretions. The niosomes contained minocycline and GaN had an average size of 230 nm and a zeta potential of -40 mV, respectively. The percentage of drug entrapment and delayed drug release was both high in niosomal formulations. Niosomes containing minocycline and GaN dispersed 1, 3 and 5 day old biofilms. The mice given the combination of two compounds required less time to be treated than the animals given the single medication (minocycline). The minocycline& GaN-loaded niosomes could be considered as promising candidates to treat the infections caused by A. baumannii biofilm.
Collapse
Affiliation(s)
- Farnaz Shamkani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Chiani
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Esmat Mirabzadeh
- Department of Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Zafari
- Department of Biology, The University of Akron, Akron, OH 44325, United States
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Behzadi P, Gajdács M, Pallós P, Ónodi B, Stájer A, Matusovits D, Kárpáti K, Burián K, Battah B, Ferrari M, Doria C, Caggiari G, Khusro A, Zanetti S, Donadu MG. Relationship between Biofilm-Formation, Phenotypic Virulence Factors and Antibiotic Resistance in Environmental Pseudomonas aeruginosa. Pathogens 2022; 11:1015. [PMID: 36145447 PMCID: PMC9503712 DOI: 10.3390/pathogens11091015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The formation of a protective biofilm by Pseudomonas aeruginosa (PA) is one of the hallmarks of their survival both in vivo and in harsh environmental conditions, thus, biofilm-eradication has relevance from therapeutic perspectives and for infection control. The aim of our study was to investigate the possible relationship between antibiotic resistance, biofilm-forming capacity and virulence factors in n = 166 PA isolates of environmental origin. Antimicrobial susceptibility testing and the phenotypic detection of resistance determinants were carried out using standard protocols. The biofilm-forming capacity of PA was tested using a standardized crystal violet microtiter plate-based method. Motility (swimming, swarming, and twitching) and siderophore production of the isolates were also assessed. Resistance rates were highest for ciprofloxacin (46.98%), levofloxacin (45.18%), ceftazidime (31.92%) and cefepime (30.12%); 19.28% of isolates met the criteria to be classified as multidrug-resistant (MDR). Efflux pump overexpression, AmpC overexpression, and modified Hodge-test positivity were noted in 28.31%, 18.07% and 3.61%, respectively. 22.89% of isolates were weak/non-biofilm producers, while 27.71% and 49.40% were moderate and strong biofilm producers, respectively. Based on MDR status of the isolates, no significant differences in biofilm-production were shown among environmental PA (non-MDR OD570 [mean ± SD]: 0.416 ± 0.167 vs. MDR OD570: 0.399 ± 0.192; p > 0.05). No significant association was observed between either motility types in the context of drug resistance or biofilm-forming capacity (p > 0.05). 83.13% of isolates tested were positive for siderophore production. The importance of PA as a pathogen in chronic and healthcare-associated infections has been described extensively, while there is increasing awareness of PA as an environmental agent in agriculture and aquaculture. Additional studies in this field would be an important undertaking to understand the interrelated nature of biofilm production and antimicrobial resistance, as these insights may become relevant bases for developing novel therapeutics and eradication strategies against PA.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 63, 6720 Szeged, Hungary
| | - Péter Pallós
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 63, 6720 Szeged, Hungary
| | - Boglárka Ónodi
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 62–64, 6720 Szeged, Hungary
| | - Anette Stájer
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 62–64, 6720 Szeged, Hungary
| | - Danica Matusovits
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 62–64, 6720 Szeged, Hungary
| | - Krisztina Kárpáti
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62–64, 6720 Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Faculty of Medicine, University of Szeged, Semmelweis utca 6., 6725 Szeged, Hungary
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Syrian Private University (SPU), Daraa International Highway, 36822 Damascus, Syria
| | - Marco Ferrari
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Carlo Doria
- Orthopaedic Department, Sassari University Hospital, 07100 Sassari, Italy
| | | | - Ameer Khusro
- Centre for Research and Development, Department of Biotechnology, Hindustan College of Arts & Science, Padur, OMR, Chennai 603103, India
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Matthew Gavino Donadu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy
| |
Collapse
|
4
|
Carneiro MS, Crispim MN, Wilhelm CM, Volpato FCZ, Barth AL. Evaluation of filter paper as a means of transporting inactivated Gram‐negative non‐fermentative bacteria and
Haemophilus
spp. for identification using the MALDI‐TOF MS system. Lett Appl Microbiol 2022; 75:17-23. [DOI: 10.1111/lam.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Maiara S. Carneiro
- LABRESIS‐ Laboratório de Pesquisa em Resistência Bacteriana Hospital de Clínicas de Porto Alegre Porto Alegre RS Brazil
- PPGCF ‐ Programa de Pós‐Graduação em Ciências Farmacêuticas Faculdade de Farmácia Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
| | - Marina N. Crispim
- LABRESIS‐ Laboratório de Pesquisa em Resistência Bacteriana Hospital de Clínicas de Porto Alegre Porto Alegre RS Brazil
| | - Camila M. Wilhelm
- LABRESIS‐ Laboratório de Pesquisa em Resistência Bacteriana Hospital de Clínicas de Porto Alegre Porto Alegre RS Brazil
- PPGCF ‐ Programa de Pós‐Graduação em Ciências Farmacêuticas Faculdade de Farmácia Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
| | - Fabiana C. Z. Volpato
- LABRESIS‐ Laboratório de Pesquisa em Resistência Bacteriana Hospital de Clínicas de Porto Alegre Porto Alegre RS Brazil
- PPGCM ‐ Programa de Pós‐Graduação em Ciências Médicas Faculdade de Medicina Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
| | - Afonso L. Barth
- LABRESIS‐ Laboratório de Pesquisa em Resistência Bacteriana Hospital de Clínicas de Porto Alegre Porto Alegre RS Brazil
- PPGCF ‐ Programa de Pós‐Graduação em Ciências Farmacêuticas Faculdade de Farmácia Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
- PPGCM ‐ Programa de Pós‐Graduação em Ciências Médicas Faculdade de Medicina Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
| |
Collapse
|
5
|
Relationship between the Biofilm-Forming Capacity and Antimicrobial Resistance in Clinical Acinetobacter baumannii Isolates: Results from a Laboratory-Based In Vitro Study. Microorganisms 2021; 9:microorganisms9112384. [PMID: 34835509 PMCID: PMC8618777 DOI: 10.3390/microorganisms9112384] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
The relationship between the multidrug-resistant (MDR) phenotype and biofilm-forming capacity has been a topic of extensive interest among biomedical scientists, as these two factors may have significant influence on the outcomes of infections. The aim of the present study was to establish a possible relationship between biofilm-forming capacity and the antibiotic-resistant phenotype in clinical Acinetobacter baumannii (A. baumannii) isolates. A total of n = 309 isolates were included in this study. Antimicrobial susceptibility testing and the phenotypic detection of resistance determinants were carried out. The capacity of isolates to produce biofilms was assessed using a crystal violet microtiter-plate-based method. Resistance rates were highest for ciprofloxacin (71.19%; n = 220), levofloxacin (n = 68.61%; n = 212), and trimethoprim-sulfamethoxazole (n = 66.02%; n = 209); 42.72% (n = 132) of isolates were classified as MDR; 22.65% (n = 70) of tested isolates were positive in the modified Hodge-test; the overexpression of efflux pumps had significant effects on the susceptibilities of meropenem, gentamicin, and ciprofloxacin in 14.24% (n = 44), 6.05% (n = 19), and 27.51% (n = 85), respectively; 9.39% (n = 29), 12.29% (n = 38), 22.97% (n = 71), and 55.35% (n = 170) of isolates were non-biofilm-producing and weak, moderate, and strong biofilm producers, respectively. A numerical, but statistically not significant, difference was identified between the MDR and non-MDR isolates regarding their biofilm-forming capacity (MDR: 0.495 ± 0.309 vs. non-MDR: 0.545 ± 0.283; p = 0.072), and no association was seen between resistance to individual antibiotics and biofilm formation. Based on numerical trends, MER-resistant isolates were the strongest biofilm producers (p = 0.067). Our study emphasizes the need for additional experiments to assess the role biofilms have in the pathogenesis of A. baumannii infections.
Collapse
|
6
|
Gajdács M, Baráth Z, Kárpáti K, Szabó D, Usai D, Zanetti S, Donadu MG. No Correlation between Biofilm Formation, Virulence Factors, and Antibiotic Resistance in Pseudomonas aeruginosa: Results from a Laboratory-Based In Vitro Study. Antibiotics (Basel) 2021; 10:1134. [PMID: 34572716 PMCID: PMC8471826 DOI: 10.3390/antibiotics10091134] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) possesses a plethora of virulence determinants, including the production of biofilm, pigments, exotoxins, proteases, flagella, and secretion systems. The aim of our present study was to establish the relationship between biofilm-forming capacity, the expression of some important virulence factors, and the multidrug-resistant (MDR) phenotype in P. aeruginosa. A total of three hundred and two (n = 302) isolates were included in this study. Antimicrobial susceptibility testing and phenotypic detection of resistance determinants were carried out; based on these results, isolates were grouped into distinct resistotypes and multiple antibiotic resistance (MAR) indices were calculated. The capacity of isolates to produce biofilm was assessed using a crystal violet microtiter-plate based method. Motility (swimming, swarming, and twitching) and pigment-production (pyoverdine and pyocyanin) were also measured. Pearson correlation coefficients (r) were calculated to determine for antimicrobial resistance, biofilm-formation, and expression of other virulence factors. Resistance rates were the highest for ceftazidime (56.95%; n = 172), levofloxacin (54.97%; n = 166), and ciprofloxacin (54.64%; n = 159), while lowest for colistin (1.66%; n = 5); 44.04% (n = 133) of isolates were classified as MDR. 19.87% (n = 60), 20.86% (n = 63) and 59.27% (n = 179) were classified as weak, moderate, and strong biofilm producers, respectively. With the exception of pyocyanin production (0.371 ± 0.193 vs. non-MDR: 0.319 ± 0.191; p = 0.018), MDR and non-MDR isolates did not show significant differences in expression of virulence factors. Additionally, no relevant correlations were seen between the rate of biofilm formation, pigment production, or motility. Data on interplay between the presence and mechanisms of drug resistance with those of biofilm formation and virulence is crucial to address chronic bacterial infections and to provide strategies for their management.
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 63, 6720 Szeged, Hungary
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62–64, 6720 Szeged, Hungary;
| | - Krisztina Kárpáti
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62–64, 6720 Szeged, Hungary;
| | - Dóra Szabó
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
| | - Donatella Usai
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.U.); (S.Z.); (M.G.D.)
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.U.); (S.Z.); (M.G.D.)
| | - Matthew Gavino Donadu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.U.); (S.Z.); (M.G.D.)
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
7
|
Marta-Costa A, Miranda C, Silva V, Silva A, Martins Â, Pereira JE, Maltez L, Capita R, Alonso-Calleja C, Igrejas G, Poeta P. Survey of the Knowledge and Use of Antibiotics among Medical and Veterinary Health Professionals and Students in Portugal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2753. [PMID: 33803226 PMCID: PMC7967476 DOI: 10.3390/ijerph18052753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022]
Abstract
Antimicrobial resistance (AMR) is an urgent and complex problem worldwide, exacerbated by the frequently inappropriate use of antibiotics. The purpose of this study was to survey the levels of knowledge and awareness about antibiotic use and stewardship, among human and veterinary health professionals or students in Portugal, and the associations between antibiotic knowledge factors and socio-professional groups. In cross-sectional survey design, a total of 449 online structured questionnaires were completed in 2018-2019. The statistical analysis was performed dividing the respondents into four groups, A (undergraduate students), B (PhD students and researchers), C (lecturers), and D (technicians and other occupation). Among all respondents, 17% (n = 75) revealed some gap in knowledge about antibiotic resistance and the antibiotics that should be administered for different infection types (bacterial, viral, or fungal). Of the 159 pet owners among the respondents, only half had administered antibiotics to their animal and 64% (n = 102) knew that veterinary prescription is mandatory when administering antibiotics to animals. All groups statistically agreed that the AMR is a major public health problem and the antibiotics should be administrated for bacterial infections and used until the whole pack has been finished (p = 0.00). As expected, only groups B and C demonstrated a higher level of knowledge to recognize the antibiotic name and their active ingredient than undergraduate students (p = 0.00). About the antibiotic use on pets, only group B was statistically significant to no used antibiotics on their pets (p = 0.00). However, groups A, C, and D were statistically significant for the knowledge about the mandatory veterinarian prescription and groups C and D were significantly statistics for fully aware of the transmission of bacteria between animals and humans. In conclusion, in matters related to AMR, the behavior, education, and training of the general public and health professionals, including those who prescribe antibiotics for humans and animals, need to be improved.
Collapse
Affiliation(s)
- Ana Marta-Costa
- Centre for Transdisciplinary Development Studies (CETRAD), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Carla Miranda
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Aflto Douro, 5000-801 Vila Real, Portugal; (C.M.); (V.S.); (A.S.); (J.E.P.); (L.M.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Caparica, 2829-516 Lisboa, Portugal;
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Aflto Douro, 5000-801 Vila Real, Portugal; (C.M.); (V.S.); (A.S.); (J.E.P.); (L.M.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Caparica, 2829-516 Lisboa, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Aflto Douro, 5000-801 Vila Real, Portugal; (C.M.); (V.S.); (A.S.); (J.E.P.); (L.M.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Caparica, 2829-516 Lisboa, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ângela Martins
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Department of Zootechnics, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - José Eduardo Pereira
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Aflto Douro, 5000-801 Vila Real, Portugal; (C.M.); (V.S.); (A.S.); (J.E.P.); (L.M.)
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Luis Maltez
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Aflto Douro, 5000-801 Vila Real, Portugal; (C.M.); (V.S.); (A.S.); (J.E.P.); (L.M.)
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Caparica, 2829-516 Lisboa, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Aflto Douro, 5000-801 Vila Real, Portugal; (C.M.); (V.S.); (A.S.); (J.E.P.); (L.M.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Caparica, 2829-516 Lisboa, Portugal;
| |
Collapse
|
8
|
Qiu Y, Yang J, Chen Y, Yang J, Zhu Q, Zhu C, Li S, Liu J, Wan C, Zhu Y, Chen M, Xu Y, Tong J, Li R, Shan Q, Lin D, Wu S, Zhuo Z, Wang C, Zhao S, Qi Z, Sun X, Maihebuba B, Jia C, Gao H, Cheng Y, Zeng M. Microbiological profiles and antimicrobial resistance patterns of pediatric bloodstream pathogens in China, 2016-2018. Eur J Clin Microbiol Infect Dis 2020; 40:739-749. [PMID: 33078219 DOI: 10.1007/s10096-020-04069-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES This study aimed to investigate the microbiological profiles and antimicrobial resistance patterns of bloodstream pathogens in Chinese children. METHODS This retrospective study was conducted at 13 tertiary hospitals in China during 2016-2018. The first bloodstream isolates of the same species from one pediatric patient < 18 years were included to this study for analysis. Antimicrobial susceptibility testing was determined based on minimum inhibitory concentrations or Kirby-Bauer disk diffusion methods according to the 2018 Clinical and Laboratory Standards Institute guidelines. RESULTS Overall, 9345 nonduplicate bloodstream isolates were collected. Top 10 pathogens included Coagulase-negative staphylococcus (CoNS) (44.4%), Escherichia coli (10.2%), Klebsiella pneumoniae (5.9%), Staphylococcus aureus (5.0%), Streptococcus pneumoniae (4.9%), Pseudomonas aeruginosa(2.8%), Enterococcus faecium (2.7%), Stenotrophomonas maltophilia (2.4%), Salmonella spp. (2.3%), and Streptococcus agalactiae (2.0%). The commonest pathogens apart from CoNS in age group 0-28 days, 29 days-2 months, 3-11 months, 1-5 years, and ≥ 5 years were Escherichia coli (17.2%), Escherichia coli (14.0%), Escherichia coli (7.9%), Streptococcus pneumoniae (10.7%) ,and Staphylococcus aureus (13.6%), respectively. The overall prevalence of extended-spectrum β-lactamases-producing Enterobacteriaceae, carbapenem-resistant Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii, and carbapenem-resistant Pseudomonas aeruginosa were 41.4, 28.4, 31.7, and 5.6%, respectively. The overall prevalence of methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae and vancomycin-resistant Enterococcus was 38.1, 28.3, and 0.7%, respectively. CONCLUSIONS The major bacterial pathogens have differences in different age groups, ward types, and regions in Chinese children, and the commonest causing microorganism was the Escherichia coli, especially in neonates and infants. High prevalence of important resistant phenotypes is of a serious concern.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Infectious Diseases, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Junwen Yang
- Department of Microbiology Laboratory, Children's Hospital Affiliated to Zhengzhou University (Henan Children's Hospital), Zhengzhou, China
| | - Yiping Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinhong Yang
- Department of Microbiology Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingxiong Zhu
- Department of Infection Diseases, Children's hospital of Jiangxi Province, Nanchang, China
| | - Chunhui Zhu
- Department of Infection Diseases, Children's hospital of Jiangxi Province, Nanchang, China
| | - Shuangjie Li
- Department of Hepatology, Hunan Children's Hospital, Changsha, China
| | - Jing Liu
- Department of Infection Diseases, Hunan Children's Hospital, Changsha, China
| | - Chaomin Wan
- Department of Pediatrics, Sichuan University West China Second Hospital, Chengdu, China
| | - Yu Zhu
- Department of Pediatrics, Sichuan University West China Second Hospital, Chengdu, China
| | - Minxia Chen
- Department of Infections Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yi Xu
- Department of Infections Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jianning Tong
- Department of Pediatric, Gastroenterology and Infectious Diseases, Qingdao Women and Children's Hospital, Qingdao, China
| | - Rui Li
- Department of Pediatric, Gastroenterology and Infectious Diseases, Qingdao Women and Children's Hospital, Qingdao, China
| | - Qingwen Shan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Daojiong Lin
- Department of infectious diseases, Hainan Women and Children's Medical Center, Haikou, China
| | - Shouye Wu
- Department of infectious diseases, Hainan Women and Children's Medical Center, Haikou, China
| | - Zhiqiang Zhuo
- Department of infectious diseases, Xiamen Children's Hospital, Xiamen, China
| | - Caihong Wang
- Department of infectious diseases, Xiamen Children's Hospital, Xiamen, China
| | - Shiyong Zhao
- Department of Infectious Diseases, Hangzhou Children's Hospital, Hangzhou, China
| | - Zhenghong Qi
- Department of Infectious Diseases, Hangzhou Children's Hospital, Hangzhou, China
| | - Xiaofeng Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Bieerding Maihebuba
- Department of Infectious Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chunmei Jia
- Department of Pharmacy, The fourth Hospital of Baotou, Baotou, China
| | - Huiling Gao
- Department of Pharmacy, The fourth Hospital of Baotou, Baotou, China
| | - Yibing Cheng
- Department of Emergency, Henan Children's Hospital Affiliated to Zhengzhou University, 33, Longhu Outer Ring East Road, Zhengzhou, 450018, China.
| | - Mei Zeng
- Department of Infectious Diseases, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | | |
Collapse
|
9
|
Gajdács M. Carbapenem-Resistant but Cephalosporin-Susceptible Pseudomonas aeruginosa in Urinary Tract Infections: Opportunity for Colistin Sparing. Antibiotics (Basel) 2020; 9:E153. [PMID: 32244694 PMCID: PMC7235726 DOI: 10.3390/antibiotics9040153] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
This paper briefly reports the occurrence and epidemiology of carbapenem-resistant but cephalosporin-susceptible (Car-R/Ceph-S) Pseudomonas aeruginosa isolates from urinary tract infections (UTIs) in a tertiary-care hospital in the Southern Region of Hungary, and the phenotypic characterization of the possible resistance mechanisms in these isolates. Isolates and data were collected regarding P. aeruginosa UTIs corresponding to the period between 2008 and 2017. Susceptibility testing was performed using the Kirby-Bauer disk diffusion method; minimum inhibitory concentrations (MICs) of the isolates were determined using E-tests. The phenotypic detection of ampicillin C-type (AmpC) β-lactamases, efflux pump overexpression and carbapenemase production was also performed. P. aeruginosa represented n = 575 (2.72% ± 0.64%) from outpatient, and n = 1045 (5.43% ± 0.81%) from inpatient urinary samples, respectively. Based on the disk diffusion test, n = 359 (22.16%) were carbapenem-resistant; in addition to carbapenems, n = (64.34%) were also resistant to ciprofloxacin; n = (60.17%) to gentamicin/tobramycin; n = (58.51%) to levofloxacin; and n = (27.57%) to amikacin. From among the carbapenem-resistant isolates, n = 56 (15.59%) isolates were multidrug-resistant, while n = 16 (4.46%) were extensively drug-resistant. From among the Car-R/Ceph-S isolates (n = 57), overexpression of AmpC was observed in n = 7 cases (12.28%); carbapenemase production in n = 4 (7.02%); while overexpression of efflux pumps was present in n = 31 (54.39%) isolates. To spare last-resort agents, e.g., colistin, the use of broad-spectrum cephalosporins or safe, alternative agents should be considered in these infections.
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary; ; Tel.: +36-62-341-330
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| |
Collapse
|