1
|
Roger C. Understanding antimicrobial pharmacokinetics in critically ill patients to optimize antimicrobial therapy: A narrative review. JOURNAL OF INTENSIVE MEDICINE 2024; 4:287-298. [PMID: 39035618 PMCID: PMC11258509 DOI: 10.1016/j.jointm.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 07/23/2024]
Abstract
Effective treatment of sepsis not only demands prompt administration of appropriate antimicrobials but also requires precise dosing to enhance the likelihood of patient survival. Adequate dosing refers to the administration of doses that yield therapeutic drug concentrations at the infection site. This ensures a favorable clinical and microbiological response while avoiding antibiotic-related toxicity. Therapeutic drug monitoring (TDM) is the recommended approach for attaining these goals. However, TDM is not universally available in all intensive care units (ICUs) and for all antimicrobial agents. In the absence of TDM, healthcare practitioners need to rely on several factors to make informed dosing decisions. These include the patient's clinical condition, causative pathogen, impact of organ dysfunction (requiring extracorporeal therapies), and physicochemical properties of the antimicrobials. In this context, the pharmacokinetics of antimicrobials vary considerably between different critically ill patients and within the same patient over the course of ICU stay. This variability underscores the need for individualized dosing. This review aimed to describe the main pathophysiological changes observed in critically ill patients and their impact on antimicrobial drug dosing decisions. It also aimed to provide essential practical recommendations that may aid clinicians in optimizing antimicrobial therapy among critically ill patients.
Collapse
Affiliation(s)
- Claire Roger
- Department of Anesthesiology and Intensive Care, Pain and Emergency Medicine, Nîmes-Caremeau University Hospital, Nîmes, France
- UR UM 103 IMAGINE (Initial Management and prévention of orGan failures IN critically ill patiEnts), Faculty of Medicine, Montpellier University, Montpellier, France
| |
Collapse
|
2
|
Diani E, Bianco G, Gatti M, Gibellini D, Gaibani P. Colistin: Lights and Shadows of an Older Antibiotic. Molecules 2024; 29:2969. [PMID: 38998921 PMCID: PMC11243602 DOI: 10.3390/molecules29132969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The emergence of antimicrobial resistance represents a serious threat to public health and for infections due to multidrug-resistant (MDR) microorganisms, representing one of the most important causes of death worldwide. The renewal of old antimicrobials, such as colistin, has been proposed as a valuable therapeutic alternative to the emergence of the MDR microorganisms. Although colistin is well known to present several adverse toxic effects, its usage in clinical practice has been reconsidered due to its broad spectrum of activity against Gram-negative (GN) bacteria and its important role of "last resort" agent against MDR-GN. Despite the revolutionary perspective of treatment with this old antimicrobial molecule, many questions remain open regarding the emergence of novel phenotypic traits of resistance and the optimal usage of the colistin in clinical practice. In last years, several forward steps have been made in the understanding of the resistance determinants, clinical usage, and pharmacological dosage of this molecule; however, different points regarding the role of colistin in clinical practice and the optimal pharmacokinetic/pharmacodynamic targets are not yet well defined. In this review, we summarize the mode of action, the emerging resistance determinants, and its optimal administration in the treatment of infections that are difficult to treat due to MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Erica Diani
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Gabriele Bianco
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| | - Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Davide Gibellini
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Paolo Gaibani
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
3
|
Kim KY, Kim BH, Kwack WG, Kwon HJ, Cho SH, Kim CW. Simple and robust LC-MS/MS method for quantification of colistin methanesulfonate and colistin in human plasma for therapeutic drug monitoring. J Pharm Biomed Anal 2023; 236:115734. [PMID: 37776629 DOI: 10.1016/j.jpba.2023.115734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
A rapid, simple, and robust LC-MS/MS method was developed and validated for the quantitation of colistin and colistin methanesulfonate (CMS) in human plasma. The method also prevented overestimation of colistin concentration by establishing the stability of CMS under sample preparation conditions, including blood and plasma storage conditions. Polymyxin B1 was used as an internal standard, and positive-ion electrospray ionization in multiple reaction monitoring mode was used for quantification. Chromatographic separation was achieved using a Zorbax eclipse C18 column (3.5 µm, 2.1 mm i.d. × 100 mm), with a flow rate of 0.5 mL/min, 5 μL injection volume, and gradient elution with a mixture of acetonitrile-water (containing 0.1 % trifluoroacetic acid). The method had a quantifiable range of 0.043-8.61 and 0.057-11.39 μg/mL for colistin A and B in human plasma, respectively, under a total runtime of 6.0 min. Further, it demonstrated appropriate extraction efficiency, no significant interference from co-eluting endogenous compounds, and satisfactory intraday and interday precision and accuracy. The proposed procedure for sample preparation successfully addressed the issue of CMS instability, consequently diminishing the probability of overestimating the concentration of colistin. Therefore, this simple and robust LC-MS/MS method for CMS and colistin quantification in human plasma is a valuable tool for clinicians to accurately monitor colistin treatment in patients with infections caused by multidrug-resistant (MDR) Gram-negative bacteria.
Collapse
Affiliation(s)
- Kwang-Youl Kim
- Department of Clinical Pharmacology, Inha University Hospital, Inha University School of Medicine, Incheon, the Republic of Korea
| | - Bo-Hyung Kim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University Hospital, Seoul, the Republic of Korea; East-West Medical Research Institute, Kyung Hee University, Seoul, the Republic of Korea
| | - Won Gun Kwack
- Department of Internal Medicine, Kyung Hee University Hospital, Seoul, the Republic of Korea
| | - Hyun-Jung Kwon
- Department of Clinical Pharmacology, Inha University Hospital, Inha University School of Medicine, Incheon, the Republic of Korea
| | - Sang-Heon Cho
- Department of Clinical Pharmacology, Inha University Hospital, Inha University School of Medicine, Incheon, the Republic of Korea
| | - Cheol-Woo Kim
- Department of Clinical Pharmacology, Inha University Hospital, Inha University School of Medicine, Incheon, the Republic of Korea; Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, the Republic of Korea.
| |
Collapse
|
4
|
Vairo C, Villar Vidal M, Maria Hernandez R, Igartua M, Villullas S. Colistin- and amikacin-loaded lipid-based drug delivery systems for resistant gram-negative lung and wound bacterial infections. Int J Pharm 2023; 635:122739. [PMID: 36801363 DOI: 10.1016/j.ijpharm.2023.122739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Antimicrobial resistance (AMR) is a global health issue, which needs to be tackled without further delay. The World Health Organization(WHO) has classified three gram-negative bacteria, Pseudomonas aeruginosa, Klebsiella pneumonia and Acinetobacter baumannii, as the principal responsible for AMR, mainly causing difficult to treat nosocomial lung and wound infections. In this regard, the need for colistin and amikacin, the re-emerged antibiotics of choice for resistant gram-negative infections, will be examined as well as their associated toxicity. Thus, current but ineffective clinical strategies designed to prevent toxicity related to colistin and amikacin will be reported, highlighting the importance of lipid-based drug delivery systems (LBDDSs), such as liposomes, solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), as efficient delivery strategies for reducing antibiotic toxicity. This review reveals that colistin- and amikacin-NLCs are promising carriers with greater potential than liposomes and SLNs to safely tackle AMR, especially for lung and wound infections.
Collapse
Affiliation(s)
- Claudia Vairo
- BioKeralty Research Institute AIE, Albert Einstein, 25-E3, 01510 Miñano, Spain; NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | | | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Silvia Villullas
- BioKeralty Research Institute AIE, Albert Einstein, 25-E3, 01510 Miñano, Spain.
| |
Collapse
|
5
|
Onofrei MI, Ghiciuc CM, Luca CM, Postolache P, Sapaniuc C, Enache Leonte G, Rosu FM. Optimization of Therapy and the Risk of Probiotic Use during Antibiotherapy in Septic Critically Ill Patients: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:478. [PMID: 36984479 PMCID: PMC10056847 DOI: 10.3390/medicina59030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023]
Abstract
Optimizing the entire therapeutic regimen in septic critically ill patients should be based not only on improving antibiotic use but also on optimizing the entire therapeutic regimen by considering possible drug-drug or drug-nutrient interactions. The aim of this narrative review is to provide a comprehensive overview on recent advances to optimize the therapeutic regimen in septic critically ill patients based on a pharmacokinetics and pharmacodynamic approach. Studies on recent advances on TDM-guided drug therapy optimization based on PK and/or PD results were included. Studies on patients <18 years old or with classical TDM-guided therapy were excluded. New approaches in TDM-guided therapy in septic critically ill patients based on PK and/or PD parameters are presented for cefiderocol, carbapenems, combinations beta-lactams/beta-lactamase inhibitors (piperacillin/tazobactam, ceftolozane/tazobactam, ceftazidime/avibactam), plazomicin, oxazolidinones and polymyxins. Increased midazolam toxicity in combination with fluconazole, nephrotoxic synergism between furosemide and aminoglycosides, life-threatening hypoglycemia after fluoroquinolone and insulin, prolonged muscle weakness and/or paralysis after neuromuscular blocking agents and high-dose corticosteroids combinations are of interest in critically ill patients. In the real-world practice, the use of probiotics with antibiotics is common; even data about the risk and benefits of probiotics are currently spares and inconclusive. According to current legislation, probiotic use does not require safety monitoring, but there are reports of endocarditis, meningitis, peritonitis, or pneumonia associated with probiotics in critically ill patients. In addition, probiotics are associated with risk of the spread of antimicrobial resistance. The TDM-guided method ensures a true optimization of antibiotic therapy, and particular efforts should be applied globally. In addition, multidrug and drug-nutrient interactions in critically ill patients may increase the likelihood of adverse events and risk of death; therefore, the PK and PD particularities of the critically ill patient require a multidisciplinary approach in which knowledge of clinical pharmacology is essential.
Collapse
Affiliation(s)
- Maria Ioana Onofrei
- Clinic of Infectious Diseases, “Sf. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania
- Department of Infectious Diseases, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cristina Mihaela Ghiciuc
- Pharmacology, Clinical Pharmacology and Algeziology, Department of Morpho-Functional Sciences II, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Catalina Mihaela Luca
- Clinic of Infectious Diseases, “Sf. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania
- Department of Infectious Diseases, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Paraschiva Postolache
- Department of Medicine I—Pulmonary Rehabilitation Clinic, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cristina Sapaniuc
- Clinic of Infectious Diseases, “Sf. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania
- Department of Infectious Diseases, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Georgiana Enache Leonte
- Clinic of Infectious Diseases, “Sf. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania
- Department of Infectious Diseases, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Florin Manuel Rosu
- Clinic of Infectious Diseases, “Sf. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania
- Department of Infectious Diseases, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
6
|
Jiang Y, Ding Y, Wei Y, Jian C, Liu J, Zeng Z. Carbapenem-resistant Acinetobacter baumannii: A challenge in the intensive care unit. Front Microbiol 2022; 13:1045206. [PMID: 36439795 PMCID: PMC9684325 DOI: 10.3389/fmicb.2022.1045206] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) has become one of the leading causes of healthcare-associated infections globally, particularly in intensive care units (ICUs). Cross-transmission of microorganisms between patients and the hospital environment may play a crucial role in ICU-acquired CRAB colonization and infection. The control and treatment of CRAB infection in ICUs have been recognized as a global challenge because of its multiple-drug resistance. The main concern is that CRAB infections can be disastrous for ICU patients if currently existing limited therapeutic alternatives fail in the future. Therefore, the colonization, infection, transmission, and resistance mechanisms of CRAB in ICUs need to be systematically studied. To provide a basis for prevention and control countermeasures for CRAB infection in ICUs, we present an overview of research on CRAB in ICUs, summarize clinical infections and environmental reservoirs, discuss the drug resistance mechanism and homology of CRAB in ICUs, and evaluate contemporary treatment and control strategies.
Collapse
|
7
|
Kyriakoudi A, Pontikis K, Valsami G, Avgeropoulou S, Neroutsos E, Christodoulou E, Moraitou E, Markantonis SL, Dokoumetzidis A, Rello J, Koutsoukou A. Pharmacokinetic Characteristics of Nebulized Colistimethate Sodium Using Two Different Types of Nebulizers in Critically Ill Patients with Ventilator-Associated Respiratory Infections. Antibiotics (Basel) 2022; 11:1528. [PMID: 36358184 PMCID: PMC9686516 DOI: 10.3390/antibiotics11111528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 05/25/2024] Open
Abstract
Background: Rising antimicrobial resistance has led to a revived interest in inhaled colistin treatment in the critically ill patient with ventilator-associated respiratory infection (VARI). Nebulization via vibrating mesh nebulizers (VMNs) is considered the current standard-of-care, yet the use of generic jet nebulizers (JNs) is more widespread. Few data exist on the intrapulmonary pharmacokinetics of colistin when administered through VMNs, while there is a complete paucity regarding the use of JNs. Methods: In this study, 18 VARI patients who received 2 million international units of inhaled colistimethate sodium (CMS) through a VMN were pharmacokinetically compared with six VARI patients who received the same drug dose through a JN, in the absence of systemic CMS administration. Results: Surprisingly, VMN and JN led to comparable formed colistin exposures in the epithelial lining fluid (ELF) (median (IQR) AUC0-24: 86.2 (46.0-185.9) mg/L∙h with VMN and 91.5 (78.1-110.3) mg/L∙h with JN). The maximum ELF concentration was 10.4 (4.7-22.6) mg/L and 7.4 (6.2-10.3) mg/L, respectively. Conclusions: Based on our results, JN might be considered a viable alternative to the theoretically superior VMN. Therapeutic drug monitoring in the ELF can be advised due to the observed low exposure, high variability, and appreciable systemic absorption.
Collapse
Affiliation(s)
- Anna Kyriakoudi
- Intensive Care Unit, 1st Department of Pulmonology, Medical School, National & Kapodistrian University of Athens, General Hospital for the Diseases of the Chest “I Sotiria”, 11527 Athens, Greece
| | - Konstantinos Pontikis
- Intensive Care Unit, 1st Department of Pulmonology, Medical School, National & Kapodistrian University of Athens, General Hospital for the Diseases of the Chest “I Sotiria”, 11527 Athens, Greece
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Stavrina Avgeropoulou
- Intensive Care Unit, 1st Department of Pulmonology, Medical School, National & Kapodistrian University of Athens, General Hospital for the Diseases of the Chest “I Sotiria”, 11527 Athens, Greece
| | - Efthymios Neroutsos
- Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Eirini Christodoulou
- Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Eleni Moraitou
- Microbiology Department, General Hospital for the Diseases of the Chest “I Sotiria”, 11527 Athens, Greece
| | - Sophia L. Markantonis
- Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Aristides Dokoumetzidis
- Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Jordi Rello
- Clinical Research in Pneumonia (CRIPS), Vall d’Hebron Institute of Research, 08035 Barcelona, Spain
- Clinical Research, CHU Nîmes, 30900 Nîmes, France
| | - Antonia Koutsoukou
- Intensive Care Unit, 1st Department of Pulmonology, Medical School, National & Kapodistrian University of Athens, General Hospital for the Diseases of the Chest “I Sotiria”, 11527 Athens, Greece
| |
Collapse
|
8
|
Matusik E, Boidin C, Friggeri A, Richard JC, Bitker L, Roberts JA, Goutelle S. Therapeutic Drug Monitoring of Antibiotic Drugs in Patients Receiving Continuous Renal Replacement Therapy or Intermittent Hemodialysis: A Critical Review. Ther Drug Monit 2022; 44:86-102. [PMID: 34772891 DOI: 10.1097/ftd.0000000000000941] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Antibiotics are frequently used in patients receiving intermittent or continuous renal replacement therapy (RRT). Continuous renal replacement may alter the pharmacokinetics (PK) and the ability to achieve PK/pharmacodynamic (PD) targets. Therapeutic drug monitoring (TDM) could help evaluate drug exposure and guide antibiotic dosage adjustment. The present review describes recent TDM data on antibiotic exposure and PK/PD target attainment (TA) in patients receiving intermittent or continuous RRT, proposing practical guidelines for performing TDM. METHODS Studies on antibiotic TDM performed in patients receiving intermittent or continuous RRT published between 2000 and 2020 were searched and assessed. The authors focused on studies that reported data on PK/PD TA. TDM recommendations were based on clinically relevant PK/PD relationships and previously published guidelines. RESULTS In total, 2383 reports were retrieved. After excluding nonrelevant publications, 139 articles were selected. Overall, 107 studies reported PK/PD TA for 24 agents. Data were available for various intermittent and continuous RRT techniques. The study design, TDM practice, and definition of PK/PD targets were inconsistent across studies. Drug exposure and TA rates were highly variable. TDM seems to be necessary to control drug exposure in patients receiving intermittent and continuous RRT techniques, especially for antibiotics with narrow therapeutic margins and in critically ill patients. Practical recommendations can provide insights on relevant PK/PD targets, sampling, and timing of TDM for various antibiotic classes. CONCLUSIONS Highly variable antibiotic exposure and TA have been reported in patients receiving intermittent or continuous RRT. TDM for aminoglycosides, beta-lactams, glycopeptides, linezolid, and colistin is recommended in patients receiving RRT and suggested for daptomycin, fluoroquinolones, and tigecycline in critically ill patients on RRT.
Collapse
Affiliation(s)
- Elodie Matusik
- Pôle Pharmacie & Pôle Urgences-Réanimation-Anesthésie, Centre Hospitalier de Valenciennes, Valenciennes, France
| | - Clément Boidin
- Hospices Civils de Lyon, Groupement Hospitalier Sud, Service de Pharmacie, Pierre-Bénite
- Univ Lyon, Université Claude Bernard Lyon 1, EA 3738 CICLY - Centre pour l'Innovation en Cancérologie de Lyon, Oullins
| | - Arnaud Friggeri
- Hospices Civils de Lyon, Groupement Hospitalier Sud, Service d'Anesthésie, Médecine Intensive et Réanimation, Pierre-Bénite
- Univ Lyon, Université Claude Bernard Lyon, Faculté de Médecine Lyon Sud-Charles Mérieux, Oullins
- UMR CNRS 5308, Inserm U1111, Centre International de Recherche en Infectiologie, Laboratoire des Pathogènes Émergents
| | - Jean-Christophe Richard
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Service de Médecine Intensive Réanimation, Lyon
- Université de Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR CNRS 5220, Inserm U1206, Villeurbanne, France
| | - Laurent Bitker
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Service de Médecine Intensive Réanimation, Lyon
- Université de Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR CNRS 5220, Inserm U1206, Villeurbanne, France
| | - Jason A Roberts
- Faculty of Medicine the University of Queensland, University of Queensland Centre for Clinical Research
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes
| | - Sylvain Goutelle
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Service de Pharmacie
- Univ Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie de Lyon ; and
- Univ Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5558, Laboratoire de Biométrie et Biologie Évolutive Villeurbanne, France
| |
Collapse
|
9
|
Estimation of the Difference in Colistin Plasma Levels in Critically Ill Patients with Favorable or Unfavorable Clinical Outcomes. Pharmaceutics 2021; 13:pharmaceutics13101630. [PMID: 34683923 PMCID: PMC8540821 DOI: 10.3390/pharmaceutics13101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022] Open
Abstract
In recent decades, antimicrobial resistance (AMR) has led to an increased use of therapeutic alternatives. Among these options, colistin continues to be an option for the treatment of multi-resistant (MDR) Gram-negative bacterial infections. However, due to its high toxicity (nephrotoxicity and neurotoxicity) and narrow therapeutic window, colistin treatment must be utilized carefully. Colistin-treated patients have been observed to have higher mortality due to inadequate therapeutic levels. The objective of this study was to estimate the difference in colistin plasma levels in critically ill patients, and its relationship to favorable or unfavorable clinical outcomes. This prospective observational study was conducted between September 2017 and June 2020 at the Universidad de La Sabana Clinic, in patients who had been treated with colistimethate sodium (CMS) for at least 72 h until day 7 of drug treatment in the critical care unit of a university hospital. There were no statistically significant differences in colistin levels between groups with favorable or unfavorable clinical outcomes (0.16 SD vs. 0.54 SD p-value = 0.167). There was higher mortality in patients with subtherapeutic levels (18% vs. 0%), and additionally, there was a greater rate of renal failure in the group with higher therapeutic levels (50% vs. 20.7%). Due to the loss of power of the study, we were unable to demonstrate a possible difference between colistin levels related to favorable or unfavorable clinical outcomes at day 7. However, we recommend further studies to evaluate the impact of measuring levels in terms of mortality and security.
Collapse
|
10
|
Muenster S, Zschernack V, Dierig B, Frede S, Baumgarten G, Coburn M, Putensen C, Weisheit CK. Vancomycin and daptomycin modulate the innate immune response in a murine model of LPS-induced sepsis. Int J Immunopathol Pharmacol 2021; 35:20587384211031373. [PMID: 34296627 PMCID: PMC8312155 DOI: 10.1177/20587384211031373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sepsis is a leading cause of death worldwide, despite the use of multimodal therapies. Common antibiotic regimens are being affected by a rising number of multidrug-resistant pathogens, and new therapeutic approaches are therefore needed. Antibiotics have immunomodulatory properties which appear to be beneficial in the treatment of sepsis. We hypothesized that the last-resort antibiotics vancomycin (VAN) and daptomycin (DMC) modulate cell migration, phagocytosis, and protein cytokine levels in a murine model of lipopolysaccharide (LPS)-induced sepsis. Ten to twelve-week-old C57BL/6 mice (n = 4-6 animals per group) were stimulated with LPS for 20 h, followed by the administration of VAN or DMC. The outcome parameters were leukocyte accumulation and effector function. Quantification of the immune cells in the peritoneal lavage was performed using flow cytometry analysis. Phagocytosis was measured using pHrodo E. coli BioParticles. The response of the cytokines TNFα, IL-6, and IL-10 was measured in vitro using murine peritoneal macrophages stimulated with LPS and VAN or DMC. VAN decreased both the peritoneal macrophage and the dendritic cell populations following LPS stimulation. DMC reduced the dendritic cell population in the peritoneal cavity in LPS-infected mice. Both antibiotics increased the phagocytic activity in peritoneal macrophages, but this effect was diminished in response to LPS. Phagocytosis of dendritic cells was increased in LPS-infected animals treated with VAN. VAN and DMC differently modulated the levels of pro-and anti-inflammatory cytokines. In a murine model of LPS-induced sepsis, VAN and DMC exhibit immunomodulatory effects on cells involved in innate immunity. The question of whether these antibiotics exhibit synergistic effects in the treatment of septic patients, beyond their bactericidal properties, should be further evaluated in future studies.
Collapse
Affiliation(s)
- Stefan Muenster
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | | | - Birte Dierig
- Department of Cardiac, Thoracic and Vascular Surgery, University Hospital Mainz, Mainz, Germany
| | - Stilla Frede
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Georg Baumgarten
- Department of Anesthesiology and Intensive Care, Johanniter Krankenhaus, Bonn, Nordrhein-Westfalen, Germany
| | - Mark Coburn
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Christian Putensen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
11
|
Koulenti D, Fragkou PC, Tsiodras S. Editorial for Special Issue "Multidrug-Resistant Pathogens". Microorganisms 2020; 8:E1383. [PMID: 32927625 PMCID: PMC7563160 DOI: 10.3390/microorganisms8091383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
The era of injudicious use of antibiotics in both humans and animals has led to the selection of multidrug-resistant (MDR) pathogens, which in turn has left the medical community with limited therapeutic options [...].
Collapse
Affiliation(s)
- Despoina Koulenti
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
- 2nd Critical Care Department, Attikon University Hospital, 12462 Athens, Greece
| | - Paraskevi C. Fragkou
- 4th Department of Internal Medicine, Attikon University Hospital, 12462 Athens, Greece; (P.C.F.); (S.T.)
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Attikon University Hospital, 12462 Athens, Greece; (P.C.F.); (S.T.)
| |
Collapse
|
12
|
Ram K, Sheikh S, Bhati RK, Tripathi CD, Suri JC, Meshram GG. Steady-state pharmacokinetic and pharmacodynamic profiling of colistin in critically ill patients with multi-drug-resistant gram-negative bacterial infections, along with differences in clinical, microbiological and safety outcome. Basic Clin Pharmacol Toxicol 2020; 128:128-140. [PMID: 33245629 DOI: 10.1111/bcpt.13482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/11/2020] [Accepted: 08/11/2020] [Indexed: 12/29/2022]
Abstract
Limited data are present regarding the steady-state pharmacokinetics and pharmacodynamics of colistin in critically ill patients suffering from multi-drug-resistant gram-negative bacterial (MDR-GNB) infections. We aimed to profile the steady-state pharmacokinetics and pharmacodynamics of colistin in critically ill patients with MDR-GNB infections, along with determining the predictors that could influence the clinical, microbiological and safety outcome. We recruited 30 critically ill patients suffering from MDR-GNB infections in our prospective open-label study. Intravenous colistimethate sodium (CMS) 2 million IU was administered concurrently with inhalational CMS 1 million IU every 8 hours. Steady-state plasma colistin levels were measured. Logistic regression analysis was used to identify various predictors of clinical, microbiological and safety outcome. A large variability was observed in the steady-state colistin pharmacokinetic/pharmacodynamic parameters, along with the factors that influenced the clinical, microbiological and safety outcome. In conclusion, steady-state colistin pharmacokinetic and pharmacodynamic parameters observed in our study were largely consistent with those reported in previous studies. High acute physiology and chronic health evaluation II scores were associated with poor clinical outcome. Log-transformed colistin maximum concentration, area under the plasma concentration curve for 8 hours, apparent total body clearance and apparent volume of distribution were significantly associated with the safety outcome.
Collapse
Affiliation(s)
- Kishna Ram
- Department of Pharmacology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Salim Sheikh
- Department of Pharmacology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.,Department of Pharmacology, Employees' State Insurance Corporation Medical College and Hospital, Faridabad, India
| | - Rahul Kumar Bhati
- Department of Pharmacology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Chakra Dhar Tripathi
- Department of Pharmacology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.,Department of Pharmacology, Employees' State Insurance Corporation Medical College and Hospital, Faridabad, India
| | - Jagdish Chander Suri
- Department of Pulmonary Critical Care and Sleep Medicine, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Girish Gulab Meshram
- Department of Pharmacology, Employees' State Insurance Corporation Medical College and Hospital, Faridabad, India
| |
Collapse
|