1
|
Decadt H, Díaz-Muñoz C, Vermote L, Pradal I, De Vuyst L, Weckx S. Long-read metagenomics gives a more accurate insight into the microbiota of long-ripened gouda cheeses. Front Microbiol 2025; 16:1543079. [PMID: 40196035 PMCID: PMC11973332 DOI: 10.3389/fmicb.2025.1543079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Metagenomic studies of the Gouda cheese microbiota and starter cultures are scarce. During the present study, short-read metagenomic sequencing (Illumina) was applied on 89 Gouda cheese and processed milk samples, which have been investigated before concerning their metabolite and taxonomic composition, the latter applying amplicon-based, high-throughput sequencing (HTS) of the full-length 16S rRNA gene. Selected samples were additionally investigated using long-read metagenomic sequencing (Oxford Nanopore Technologies, ONT). Whereas the species identified by amplicon-based HTS and metagenomic sequencing were identical, the relative abundances of the major species differed significantly. Lactococcus cremoris was more abundant in the metagenomics-based taxonomic analysis compared to the amplicon-based one, whereas the opposite was true for the non-starter lactic acid bacteria (NSLAB). This discrepancy was related to a higher fragmentation of the lactococcal DNA compared with the DNA of other species when applying ONT. Possibly, a higher fragmentation was linked with a higher percentage of dead or metabolically inactive cells, suggesting that full-length 16S rRNA gene amplicon-based HTS might give a more accurate view on active cells. Further, fungi were not abundantly present in the Gouda cheeses examined, whereas about 2% of the metagenomic sequence reads was related to phages, with higher relative abundances in the cheese rinds and long-ripened cheeses. Intraspecies differences found by short-read metagenomic sequencing were in agreement with the amplicon sequence variants obtained previously, confirming the ability of full-length 16S rRNA gene amplicon-based HTS to reach a taxonomic assignment below species level. Metagenome-assembled genomes (MAGs) were retrieved for 15 species, among which the starter cultures Lc. cremoris and Lactococcus lactis and the NSLAB Lacticaseibacillus paracasei, Loigolactobacillus rennini, and Tetragenococcus halophilus, although obtaining MAGs from Lc. cremoris and Lc. lactis was more challenging because of a high intraspecies diversity and high similarity between these species. Long-read metagenomic sequencing could not improve the retrieval of lactococcal MAGs, but, overall, MAGs obtained by long-read metagenomic sequencing solely were superior compared with those obtained by short-read metagenomic sequencing solely, reaching a high-quality draft status of the genomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
2
|
Yang L, Ding F, Lin Q, Xie J, Fan W, Dai F, Cui P, Liu W. A tool to automatically design multiplex PCR primer pairs for specific targets using diverse templates. Sci Rep 2023; 13:16451. [PMID: 37777580 PMCID: PMC10542359 DOI: 10.1038/s41598-023-43825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023] Open
Abstract
Multiplex PCR is an increasingly popular method for identifying species, investigating environmental diversity, and conducting phylogenetic analysis. The complexity and increasing availability of diverse templates necessitate a highly automated approach to design degenerate primer pairs for specific targets with multiple sequences. Existing tools for degenerate primer design suffer from poor maintenance, semi-automation, low adaptability, and low tolerance for gaps. We developed PMPrimer, a Python-based tool for automated design and evaluation of multiplex PCR primer pairs for specific targets using diverse templates. PMPrimer automatically designs optimal multiplex PCR primer pairs using a statistical-based template filter; performs multiple sequence alignment, conserved region identification, and primer design; and evaluates the primers based on template coverage, taxon specificity, and target specificity. PMPrimer identifies conserved regions using Shannon's entropy method, tolerates gaps using a haplotype-based method, and evaluates multiplex PCR primer pairs based on template coverage and taxon specificity. We tested PMPrimer using datasets with diverse levels of conservation, sizes, and applications, including tuf genes of Staphylococci, hsp65 genes of Mycobacteriaceae, and 16S ribosomal RNA genes of Archaea. PMPrimer showed outstanding performance compared with existing tools and experimental validated primers. PMPrimer is available as a Python package at https://github.com/AGIScuipeng/PMPrimer .
Collapse
Affiliation(s)
- Lin Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400715, China
| | - Feng Ding
- Shenzhen National Clinical Research Center for Infectious Diseases, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Qiang Lin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Junhua Xie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen, 518000, China
| | - Wei Fan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400715, China.
| | - Peng Cui
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Wanfei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
3
|
Van der Veken D, Poortmans M, Dewulf L, Fraeye I, Michiels C, Leroy F. Challenge tests reveal limited outgrowth of proteolytic Clostridium botulinum during the production of nitrate- and nitrite-free fermented sausages. Meat Sci 2023; 200:109158. [PMID: 36905786 DOI: 10.1016/j.meatsci.2023.109158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/15/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Nitrate and nitrite salts perform a versatile role in fermented meats, including the inhibition of food pathogens (in particular proteolytic group I Clostridium botulinum). Despite the increasing interest in clean-label products, little is known about the behaviour of this pathogen in response to the removal of chemical preservatives from fermented meat formulations. Therefore, challenge tests with a cocktail of nontoxigenic group I C. botulinum strains were performed to produce nitrate/nitrite-free fermented sausages under different acidification conditions and starter culture formulations, including the use of an anticlostridial Mammaliicoccus sciuri strain. Results showed limited outgrowth of C. botulinum, even in the absence of acidification. The anticlostridial starter culture did not lead to an additional inhibitory effect. The selective plating procedure adopted within this study proofed robust to follow germination and growth of C. botulinum, inhibiting common fermentative meat microbiota. The challenge tests constitute a suitable tool to assess the behaviour of this food pathogen within fermented meats upon nitrate- and nitrite omission.
Collapse
Affiliation(s)
- David Van der Veken
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marijke Poortmans
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Lore Dewulf
- Meat Technology & Science of Protein-Rich Foods, Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Technology Campus Ghent, Ghent, Belgium
| | - Ilse Fraeye
- Meat Technology & Science of Protein-Rich Foods, Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Technology Campus Ghent, Ghent, Belgium
| | - Chris Michiels
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
4
|
Charmpi C, Thamsborg KKM, Mikalsen SO, Magnussen E, Sosa Fajardo A, Van der Veken D, Leisner JJ, Leroy F. Bacterial species diversity of traditionally ripened sheep legs from the Faroe Islands (skerpikjøt). Int J Food Microbiol 2023; 386:110023. [PMID: 36463775 DOI: 10.1016/j.ijfoodmicro.2022.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Skerpikjøt is a traditionally ripened sheep leg product from the Faroe Islands, constituting a relatively underexplored microbial ecosystem. The objective of this study is to achieve a deeper understanding of the microbial composition of this artisanal product. Nine ripened hind legs, obtained from three different producers, were assessed regarding their bacterial communities and contents of biogenic amines, including both surface and core samples. Biogenic amine concentrations were generally low, although one sample had a somewhat elevated concentration of cadaverine. Bacterial diversity was investigated by culture-dependent and culture-independent techniques. Gram-positive catalase-positive cocci (GCC) constituted the most abundant group. Within this group, Staphylococcus equorum was the most prevailing species, followed by Kocuria sp., Mammaliicoccus vitulinus, and Staphylococcus saprophyticus. Lactic acid bacteria prevailed in only one sample and were mainly represented by Latilactobacillus curvatus. Enterobacterial communities were characterised by the prevalence of Serratia proteamaculans. Despite the majority of GCC, Clostridium putrefaciens was the most abundant bacterial species in some core samples. Taken together, the culture-dependent and culture-independent identification methods gave complementary results.
Collapse
Affiliation(s)
- Christina Charmpi
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
| | - Kristian Key Milan Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Svein-Ole Mikalsen
- Faculty of Science and Technology, University of the Faroe Islands, Vestarabryggja 15, FO-100 Tórshavn, Faroe Islands
| | - Eyðfinn Magnussen
- Faculty of Science and Technology, University of the Faroe Islands, Vestarabryggja 15, FO-100 Tórshavn, Faroe Islands
| | - Ana Sosa Fajardo
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
| | - David Van der Veken
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
| | - Jørgen J Leisner
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium.
| |
Collapse
|
5
|
Genome-based characterization of a plasmid-associated micrococcin P1 biosynthetic gene cluster and virulence factors in Mammaliicoccus sciuri IMDO-S72. Appl Environ Microbiol 2021; 88:e0208821. [PMID: 34936836 DOI: 10.1128/aem.02088-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of the de novo assembled genome of Mammaliicoccus sciuri IMDO-S72 revealed the genetically encoded machinery behind its earlier reported antibacterial phenotype and gave further insight into the repertoire of putative virulence factors of this recently reclassified species. A plasmid-encoded biosynthetic gene cluster was held responsible for the antimicrobial activity of M. sciuri IMDO-S72, comprising genes involved in thiopeptide production. The compound encoded by this gene cluster was structurally identified as micrococcin P1. Further examination of its genome highlighted the ubiquitous presence of innate virulence factors mainly involved in surface colonization. Determinants contributing to aggressive virulence were generally absent, with exception of a plasmid-associated ica cluster. The native antibiotic resistance genes sal(A) and mecA were detected within the genome, amongst others, but were not consistently linked with a resistant phenotype. While mobile genetic elements were identified within the genome, such as an untypeable SCC element, they proved to be generally free of virulence- and antibiotic-related genes. These results further suggest a commensal lifestyle of M. sciuri and indicate the association of antibiotic resistance determinants with mobile genetic elements, as an important factor in conferring antibiotic resistance, in addition to their unilateral annotation. Importance Mammaliicoccus sciuri has been put forward as an important carrier of virulence and antibiotic resistance genes, which can be transmitted to clinically important staphylococcal species such as Staphylococcus aureus. As a common inhabitant of mammal skin, this species is believed to have a predominant commensal lifestyle although it has been reported as an opportunistic pathogen in some cases. This study provides an extensive genome-wide description of its putative virulence potential taking into consideration the genomic context in which these genes appear, an aspect that is often overlooked during virulence analysis. Additional genome and biochemical analysis linked M. sciuri with the production of micrococcin P1, gaining further insight to which extent these biosynthetic gene cluster are distributed amongst different related species. The frequent plasmid-associated character hints that these traits can be horizontally transferred and might confer a competitive advantage to its recipient within its ecological niche.
Collapse
|
6
|
Purahong W, Tanunchai B, Wahdan SFM, Buscot F, Schulze ED. Molecular Screening of Microorganisms Associated with Discolored Wood in Dead European Beech Trees Suffered from Extreme Drought Event Using Next Generation Sequencing. PLANTS (BASEL, SWITZERLAND) 2021; 10:2092. [PMID: 34685901 PMCID: PMC8537330 DOI: 10.3390/plants10102092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 01/04/2023]
Abstract
Drought events weaken trees and make them vulnerable to attacks by diverse plant pathogens. Here, we propose a molecular method for fast screening of microorganisms associated with European beech decline after an extreme drought period (2018) in a forest of Thuringia, Germany. We used Illumina sequencing with a recent bioinformatics approach based on DADA2 to identify archaeal, bacterial, and fungal ASVs (amplicon sequence variants) based on bacterial and archaeal 16S and fungal ITS genes. We show that symptomatic beech trees are associated with both bacterial and fungal plant pathogens. Although the plant pathogen sequences were detected in both discolored and non-discolored wood areas, they were highly enriched in the discolored wood areas. We show that almost each individual tree was associated with a different combination of pathogens. Cytospora spp. and Neonectria coccinea were among the most frequently detected fungal pathogens, whereas Erwinia spp. and Pseudomonas spp. were the dominant bacterial plant pathogens. We demonstrate that bacterial plant pathogens may be of major importance in beech decline.
Collapse
Affiliation(s)
- Witoon Purahong
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, D-06120 Halle, Germany; (B.T.); (S.F.M.W.); (F.B.)
| | - Benjawan Tanunchai
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, D-06120 Halle, Germany; (B.T.); (S.F.M.W.); (F.B.)
| | - Sara Fareed Mohamed Wahdan
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, D-06120 Halle, Germany; (B.T.); (S.F.M.W.); (F.B.)
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - François Buscot
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, D-06120 Halle, Germany; (B.T.); (S.F.M.W.); (F.B.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| | - Ernst-Detlef Schulze
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, D-07745 Jena, Germany;
| |
Collapse
|
7
|
Jia Y, Niu CT, Xu X, Zheng FY, Liu CF, Wang JJ, Lu ZM, Xu ZH, Li Q. Metabolic potential of microbial community and distribution mechanism of Staphylococcus species during broad bean paste fermentation. Food Res Int 2021; 148:110533. [PMID: 34507779 DOI: 10.1016/j.foodres.2021.110533] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/08/2023]
Abstract
Although the microbial diversity and structure in bean-based fermented foods have been widely studied, systematic studies on functional microbiota and mechanism of community forms in multi-microbial fermentation systems were still lacking. In this work, the metabolic pathway and functional potential of microbial community in broad bean paste (BBP) were investigated by metagenomics approach, and Staphylococcus, Bacillus, Weissella, Aspergillus and Zygosaccharomyces were found to be the potential predominant populations responsible for substrate alteration and flavor biosynthesis. Among them, Staphylococcus was the most abundant and widespread functional microbe, and closely related Staphylococcus species were diverse and ubiquitously distributed, with the opportunistic pathogen S. gallinarum being the most abundant Staphylococcus specie isolated from BBP. To explain the dominance status of S. gallinarum and species distributions of Staphylococcus genus, we tested the effects of abiotic and biotic factors on three Staphylococcus species using a tractable BBP model, demonstrating that adaptation to environmental conditions (environmental parameters and other functional microbes) led to the dominant position and species coexistence of Staphylococcus, and congeneric competition among Staphylococcus species further shaped ecological distributions of closely related Staphylococcus species. In general, this work revealed the metabolic potential of microbial community and distribution mechanism of Staphylococcus species during BBP fermentation, which could help traditional factories to more precisely control the safety and quality of bean-based fermented foods.
Collapse
Affiliation(s)
- Yun Jia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cheng-Tuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fei-Yun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chun-Feng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jin-Jing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Jiangsu Modern Industrial Fermentation, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Ahle CM, Stødkilde-Jørgensen K, Poehlein A, Streit WR, Hüpeden J, Brüggemann H. Comparison of three amplicon sequencing approaches to determine staphylococcal populations on human skin. BMC Microbiol 2021; 21:221. [PMID: 34320945 PMCID: PMC8320028 DOI: 10.1186/s12866-021-02284-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/21/2021] [Indexed: 02/08/2023] Open
Abstract
Background Staphylococci are important members of the human skin microbiome. Many staphylococcal species and strains are commensals of the healthy skin microbiota, while few play essential roles in skin diseases such as atopic dermatitis. To study the involvement of staphylococci in health and disease, it is essential to determine staphylococcal populations in skin samples beyond the genus and species level. Culture-independent approaches such as amplicon next-generation sequencing (NGS) are time- and cost-effective options. However, their suitability depends on the power of resolution. Results Here we compare three amplicon NGS schemes that rely on different targets within the genes tuf and rpsK, designated tuf1, tuf2 and rpsK schemes. The schemes were tested on mock communities and on human skin samples. To obtain skin samples and build mock communities, skin swab samples of healthy volunteers were taken. In total, 254 staphylococcal strains were isolated and identified to the species level by MALDI-TOF mass spectrometry. A subset of ten strains belonging to different staphylococcal species were genome-sequenced. Two mock communities with nine and eighteen strains, respectively, as well as eight randomly selected skin samples were analysed with the three amplicon NGS methods. Our results imply that all three methods are suitable for species-level determination of staphylococcal populations. However, the novel tuf2-NGS scheme was superior in resolution power. It unambiguously allowed identification of Staphylococcus saccharolyticus and distinguish phylogenetically distinct clusters of Staphylococcus epidermidis. Conclusions Powerful amplicon NGS approaches for the detection and relative quantification of staphylococci in human samples exist that can resolve populations to the species and, to some extent, to the subspecies level. Our study highlights strengths, weaknesses and pitfalls of three currently available amplicon NGS approaches to determine staphylococcal populations. Applied to the analysis of healthy and diseased skin, these approaches can be useful to attribute host-beneficial and -detrimental roles to skin-resident staphylococcal species and subspecies. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02284-1.
Collapse
Affiliation(s)
- Charlotte Marie Ahle
- Beiersdorf AG, Research & Development, Front End Innovation, 20245, Hamburg, Germany.,Department of Microbiology and Biotechnology, University of Hamburg, 22609, Hamburg, Germany
| | | | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, 37073, Göttingen, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, 22609, Hamburg, Germany
| | - Jennifer Hüpeden
- Beiersdorf AG, Research & Development, Front End Innovation, 20245, Hamburg, Germany
| | - Holger Brüggemann
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
9
|
Van Reckem E, Claeys E, Charmpi C, Sosa Fajardo A, Van der Veken D, Maes D, Weckx S, De Vuyst L, Leroy F. High-throughput amplicon sequencing to assess the impact of processing factors on the development of microbial communities during spontaneous meat fermentation. Int J Food Microbiol 2021; 354:109322. [PMID: 34247021 DOI: 10.1016/j.ijfoodmicro.2021.109322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/25/2021] [Accepted: 06/26/2021] [Indexed: 01/04/2023]
Abstract
During spontaneous meat fermentation, diverse microbial communities develop over time. These communities consist mainly of lactic acid bacteria (LAB) and coagulase-negative staphylococci (CNS), of which the species composition is influenced by the fermentation temperature and the level of acidification. Recent development and application of amplicon-based high-throughput sequencing (HTS) methods have allowed to gain deeper insights into the microbial communities of fermented meats. The aim of the present study was to investigate the effect of different fermentation temperatures and acidification profiles on the CNS communities during spontaneous fermentation, using a previously developed amplicon-based HTS method targeting both the 16S rRNA and tuf genes. Spontaneous fermentations were performed with five different lots of meat to assess inter-lot variability. The process influence was investigated by fermenting the meat batters for seven days at different fermentation temperatures (23 °C, 30 °C, and 37 °C) and in the absence or presence of added glucose to simulate different acidification levels. Additionally, the results were compared with a starter culture-initiated fermentation process. The data revealed that the fermentation temperature was the most influential processing condition in shaping the microbial communities during spontaneous meat fermentation processes, whereas differences in pH were only responsible for minor shifts in the microbial profiles. Furthermore, the CNS communities showed a great level of variability, which depended on the initial microbial communities present and their competitiveness.
Collapse
Affiliation(s)
- Emiel Van Reckem
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Ewout Claeys
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Christina Charmpi
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Ana Sosa Fajardo
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - David Van der Veken
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Dominique Maes
- Research Group of Structural Biology Brussels (SBB), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
10
|
Van Reckem E, De Vuyst L, Weckx S, Leroy F. Next-generation sequencing to enhance the taxonomic resolution of the microbiological analysis of meat and meat-derived products. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Van Reckem E, Charmpi C, Van der Veken D, Borremans W, De Vuyst L, Weckx S, Leroy F. Application of a High-Throughput Amplicon Sequencing Method to Chart the Bacterial Communities that Are Associated with European Fermented Meats from Different Origins. Foods 2020; 9:foods9091247. [PMID: 32906631 PMCID: PMC7555677 DOI: 10.3390/foods9091247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Insight into the microbial species diversity of fermented meats is not only paramount to gain control over quality development, but also to better understand the link with processing technology and geographical origin. To study the composition of the microbial communities, the use of culture-independent methods is increasingly popular but often still suffers from drawbacks, such as a limited taxonomic resolution. This study aimed to apply a previously developed high-throughput amplicon sequencing (HTS) method targeting the 16S rRNA and tuf genes to characterize the bacterial communities in European fermented meats in greater detail. The data obtained broadened the view on the microbial communities that were associated with the various products examined, revealing the presence of previously underreported subdominant species. Moreover, the composition of these communities could be linked to the specificities of individual products, in particular pH, salt content, and geographical origin. In contrast, no clear links were found between the volatile organic compound profiles of the different products and the country of origin, distinct processing conditions, or microbial communities. Future application of the HTS method offers the potential to further unravel complex microbial communities in fermented meats, as well as to assess the impact of different processing conditions on microbial consortia.
Collapse
|