1
|
Avril A, Guillier S, Rasetti-Escargueil C. Development of Effective Medical Countermeasures Against the Main Biowarfare Agents: The Importance of Antibodies. Microorganisms 2024; 12:2622. [PMID: 39770824 PMCID: PMC11677989 DOI: 10.3390/microorganisms12122622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The COVID-19 and mpox crisis has reminded the world of the potentially catastrophic consequences of biological agents. Aside from the natural risk, biological agents can also be weaponized or used for bioterrorism. Dissemination in a population or among livestock could be used to destabilize a nation by creating a climate of terror, by negatively impacting the economy and undermining institutions. The Centers for Disease Control and Prevention (CDC) classify biological agents into three categories (A or Tier 1, B and C) according to the risk they pose to the public and national security. Category A or Tier 1 consists of the six pathogens with the highest risk to the population (Bacillus anthracis, Yersinia pestis, Francisella tularensis, botulinum neurotoxins, smallpox and viral hemorrhagic fevers). Several medical countermeasures, such as vaccines, antibodies and chemical drugs, have been developed to prevent or cure the diseases induced by these pathogens. This review presents an overview of the primary medical countermeasures, and in particular, of the antibodies available against the six pathogens on the CDC's Tier 1 agents list, as well as against ricin.
Collapse
Affiliation(s)
- Arnaud Avril
- Unité Interaction Hôte-Pathogène, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| | - Sophie Guillier
- Unité Bactériologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France;
- UMR_MD1, Inserm U1261, 91220 Brétigny sur Orge, France
| | | |
Collapse
|
2
|
Antwerpen M, Beyer W, Grass G. New Insights into the Phylogeny of the A.Br.161 ("A.Br.Heroin") Clade of Bacillus anthracis. Pathogens 2024; 13:593. [PMID: 39057820 PMCID: PMC11279936 DOI: 10.3390/pathogens13070593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Bacillus anthracis is a rare but highly dangerous zoonotic bacterial pathogen. At the beginning of this century, a new manifestation of the disease, injectional anthrax, emerged as a result of recreational heroin consumption involving contaminated drugs. The organisms associated with this 13-year-lasting outbreak event in European drug consumers were all grouped into the canonical single-nucleotide polymorphism (canSNP) clade A-branch (A.Br.) 161 of B. anthracis. Related clade A.Br.161 strains of B. anthracis not associated with heroin consumption have also been identified from different countries, mostly in Asia. Because of inadvertent spread by anthropogenic activities, other strains of this A.Br.161 lineage were, however, isolated from several countries. Thus, without additional isolates from this clade, its origin of evolution or its autochthonous region remains obscure. Here, we genomically characterized six new A.Br.161 group isolates, some of which were from Iran, with others likely historically introduced into Germany. All the chromosomes of these isolates could be grouped into a distinct sub-clade within the A.Br.161 clade. This sub-clade is separated from the main A.Br.161 lineage by a single SNP. We have developed this SNP into a PCR assay facilitating the future attribution of strains to this group.
Collapse
Affiliation(s)
- Markus Antwerpen
- Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany
| | - Wolfgang Beyer
- Department of Livestock Infectiology and Environmental Hygiene, Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Gregor Grass
- Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany
| |
Collapse
|
3
|
Verguet N, Mondange L, Nolent F, Depeille A, Garnier A, Neulat-Ripoll F, Gorgé O, Tournier JN. Assessment of calcium hypochlorite for Bacillus anthracis spore surface's decontamination. Res Microbiol 2023; 174:104053. [PMID: 36925026 DOI: 10.1016/j.resmic.2023.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
Contamination with microorganisms occurs in laboratories but is also of high concern in the context of bioterrorism. Decontamination is a cornerstone that promotes good laboratory practices and occupational health and safety. Among the most resistant structures formed by microorganisms are spores, produced notably by Clostridium and Bacillus species. Here, we compared six products containing four different molecules (hydrogen peroxide, peracetic acid, sodium and calcium hypochlorite) on B. anthracis Sterne spores. We first selected the most efficient product based on its activity against spore suspensions using French and European standards. Four products showed sporicidal activity, of which only two did so in a time frame consistent with good laboratory practices. Then, we tested one of these two products under laboratory conditions on fully virulent B. anthracis spores, during common use and after contamination through a spill of a highly concentrated spore suspension. We, thus, robustly validated a decontaminant based on calcium hypochlorite not only on its ability to kill spores but also on its effectiveness under laboratory conditions. At the end, we were able to assure a complete disinfection in 1 min after spillover and in 2 min for common use.
Collapse
Affiliation(s)
- Noémie Verguet
- Bacteriology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; CNR-LE Charbon, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Lou Mondange
- Bacteriology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; Yersinia Unit, Institut Pasteur, 75015 Paris, France.
| | - Flora Nolent
- Bacteriology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Anne Depeille
- Bacteriology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; CNR-LE Charbon, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Annabelle Garnier
- Immunopathology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Fabienne Neulat-Ripoll
- Bacteriology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Olivier Gorgé
- Bacteriology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; CNR-LE Charbon, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Jean-Nicolas Tournier
- CNR-LE Charbon, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; École du Val-de-Grâce, 75015 Paris, France.
| |
Collapse
|
4
|
Paleiron N, Karkowski L, Bronstein AR, Amabile JC, Delarbre D, Mullot JU, Cazoulat A, Entine F, le Floch Brocquevieille H, Dorandeu F. [The role of the pulmonologist in an armed conflict]. Rev Mal Respir 2023; 40:156-168. [PMID: 36690507 DOI: 10.1016/j.rmr.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Recent news points to the eventuality of an armed conflict on the national territory. STATE OF THE ART In this situation, pulmonologists will in all likelihood have a major role to assume in caring for the injured, especially insofar as chest damage is a major cause of patient death. PERSPECTIVES The main injuries that pulmonologists may be called upon to treat stem not only from explosions, but also from chemical, biological and nuclear hazards. In this article, relevant organizational and pedagogical aspects are addressed. Since exhaustiveness on this subject is unattainable, we are proposing training on specific subjects for interested practitioners. CONCLUSION The resilience of the French health system in a situation of armed conflict depends on the active participation of all concerned parties. With this in mind, it is of prime importance that the pneumological community be sensitized to the potential predictable severity of war-related injuries.
Collapse
Affiliation(s)
- N Paleiron
- HIA Sainte-Anne, service de pneumologie, Toulon, France.
| | - L Karkowski
- HIA Sainte-Anne, service de médecine interne-maladies infectieuses, Toulon, France
| | - A-R Bronstein
- HIA Sainte-Anne, service de pneumologie, Toulon, France
| | - J-C Amabile
- Service de protection radiologique des armées, Paris, France
| | - D Delarbre
- HIA Sainte-Anne, service de médecine interne-maladies infectieuses, Toulon, France
| | - J-U Mullot
- Service de santé des armées, Paris, France
| | - A Cazoulat
- Service de santé des armées, service médical de la base opérationnelle de l'Île Longue, Lanveoc Poulmic, France
| | - F Entine
- Service de santé des armées, service médical de la base opérationnelle de l'Île Longue, Lanveoc Poulmic, France
| | | | - F Dorandeu
- Service de santé des armées, Institut de recherche biomédicale des armées, Brétigny, France
| |
Collapse
|
5
|
Avril A, Tournier JN, Paucod JC, Fournes B, Thullier P, Pelat T. Antibodies against Anthrax Toxins: A Long Way from Benchlab to the Bedside. Toxins (Basel) 2022; 14:172. [PMID: 35324669 PMCID: PMC8955606 DOI: 10.3390/toxins14030172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Anthrax is an acute disease caused by the bacterium Bacillus anthracis, and is a potential biowarfare/bioterrorist agent. Its pulmonary form, caused by inhalation of the spores, is highly lethal and is mainly related to injury caused by the toxins secretion. Antibodies neutralizing the toxins of B. anthracis are regarded as promising therapeutic drugs, and two are already approved by the Federal Drug Administration. We developed a recombinant human-like humanized antibody, 35PA83 6.20, that binds the protective antigen and that neutralized anthrax toxins in-vivo in White New Zealand rabbits infected with the lethal 9602 strain by intranasal route. Considering these promising results, the preclinical and clinical phase one development was funded and a program was started. Unfortunately, after 5 years, the preclinical development was cancelled due to industrial and scientific issues. This shutdown underlined the difficulty particularly, but not only, for an academic laboratory to proceed to clinical development, despite the drug candidate being promising. Here, we review our strategy and some preliminary results, and we discuss the issues that led to the no-go decision of the pre-clinical development of 35PA83 6.20 mAb. Our review provides general information to the laboratories planning a (pre-)clinical development.
Collapse
Affiliation(s)
- Arnaud Avril
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; (J.-N.T.); (J.-C.P.); (P.T.); (T.P.)
| | - Jean-Nicolas Tournier
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; (J.-N.T.); (J.-C.P.); (P.T.); (T.P.)
- Ecole du Val-de-Grâce, 75005 Paris, France
| | - Jean-Charles Paucod
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; (J.-N.T.); (J.-C.P.); (P.T.); (T.P.)
| | - Bénédicte Fournes
- Laboratoire Français du Fractionnement et des Biotechnologies, 91940 Les Ulis, France;
| | - Philippe Thullier
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; (J.-N.T.); (J.-C.P.); (P.T.); (T.P.)
| | - Thibaut Pelat
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; (J.-N.T.); (J.-C.P.); (P.T.); (T.P.)
| |
Collapse
|