1
|
Santos E, Pires FR, Souza IM, Sousa Duque T, da Silva Coelho I, Ferreira Santaren KC, Egreja Filho FB, Bonomo R, Duim Ferreira A, Viana DG, Santos JBD. Rhizosphere-associated microbiota of Canavalia ensiformis in sulfentrazone bioremediation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2175-2182. [PMID: 39010720 DOI: 10.1080/15226514.2024.2379603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The objective of this study was to determine the efficiency of the microbial rhizosphere (Canavalia ensiformis) in the phytoremediation of sulfentrazone using quantification methods (CO2 evolution, microbial biomass carbon, and metabolic quotient) and identification of bacteria (PCR-DGGE technique). The experiment was conducted in a completely randomized design, in a 2x4 factorial scheme, with four replications. The treatments were composed of rhizospheric soil (cultivated with C. ensiformis) and non-rhizosphere soil (uncultivated soil); and four levels of contamination by sulfentrazone (0, 200, 400, and 800 g ha-1 a.i.). The microbiota associated with the rhizosphere of C. ensiformis efficiently reduced sulfentrazone residues in the soil, with better performance at the dose of 200 g ha-1 a.i. Using the PCR-DGGE technique allowed the distinction of two profiles of bacteria in the rhizospheric activity of C. ensiformis. The second bacterial profile formed was more efficient in decontaminating soil contaminated with sulfentrazone residue. The microbiota associated with the rhizosphere of C. ensiformis has an efficient profile in decontaminating soils with residues equivalent to 200 g ha-1 a.i. the herbicide sulfentrazone.
Collapse
Affiliation(s)
- Esequiel Santos
- Department of Biological and Agriculture Science, Federal University of Espírito Santo, São Mateus, ES, Brazil
| | - Fábio Ribeiro Pires
- Department of Biological and Agriculture Science, Federal University of Espírito Santo, São Mateus, ES, Brazil
| | - Iasmim Marcella Souza
- Department of Agronomy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Tayna Sousa Duque
- Department of Agronomy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | | | | | - Fernando Barboza Egreja Filho
- Departament of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Robson Bonomo
- Department of Biological and Agriculture Science, Federal University of Espírito Santo, São Mateus, ES, Brazil
| | - Amanda Duim Ferreira
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Douglas Gomes Viana
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - José Barbosa Dos Santos
- Department of Agronomy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
2
|
Dimitrakopoulou ME, Tzimotoudis D, Vantarakis A. Emulsion Polymerase Chain Reaction Coupled with Denaturing Gradient Gel Electrophoresis for Microbial Diversity Studies. Methods Mol Biol 2023; 2967:31-39. [PMID: 37608100 DOI: 10.1007/978-1-0716-3358-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Emulsion PCR-DGGE is a molecular biology technique used to amplify and analyze DNA fragments. This technique combines two processes, emulsion PCR and denaturing gradient gel electrophoresis (DGGE), to enhance the specificity and yield of the amplification process and to separate the amplified fragments based on their melting behavior. In the emulsion PCR step, a high-quality DNA template is mixed with the PCR reagents and droplet generator oil to create an oil-in-water emulsion. The emulsion is then subjected to thermal cycling to amplify the target DNA fragments. The amplified fragments are recovered from the droplets and purified to remove any impurities that may interfere with downstream applications. In the DGGE step, the purified amplicon is loaded onto a DGGE apparatus, where the DNA fragments are separated and visualized based on their melting behavior. This method allows for the concurrent amplification and separation of multiple DNA fragments, thereby enhancing the resolution and sensitivity of the analysis. It is widely used in environmental and medical microbiology research, as well as in other fields that require the identification and characterization of microorganisms, such as the study of microbial diversity in soil, water, and other natural environments, as well as in the human gut microbiome and other medical samples.
Collapse
Affiliation(s)
| | | | - Apostolos Vantarakis
- Department of Public Health, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
3
|
Bacteria consortia enhanced hydrocarbon degradation of waxy crude oil. Arch Microbiol 2022; 204:701. [DOI: 10.1007/s00203-022-03316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 11/14/2022]
|
4
|
Tan Q, He H, Chen W, Huang L, Zhao D, Chen X, Li J, Yang X. Integrated genetic analysis of leaf blast resistance in upland rice: QTL mapping, bulked segregant analysis and transcriptome sequencing. AOB PLANTS 2022; 14:plac047. [PMID: 36567764 PMCID: PMC9773827 DOI: 10.1093/aobpla/plac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
Elite upland rice cultivars have the advantages of less water requirement along with high yield but are usually susceptible to various diseases. Rice blast caused by Magnaporthe oryzae is the most devastating disease in rice. Identification of new sources of resistance and the introgression of major resistance genes into elite cultivars are required for sustainable rice production. In this study, an upland rice genotype UR0803 was considered an emerging source of blast resistance. An F2 mapping population was developed from a cross between UR0803 and a local susceptible cultivar Lijiang Xintuan Heigu. The individuals from the F2 population were evaluated for leaf blast resistance in three trials 7 days after inoculation. Bulked segregant analysis (BSA) by high-throughput sequencing and SNP-index algorithm was performed to map the candidate region related to disease resistance trait. A major quantitative trait locus (QTL) for leaf blast resistance was identified on chromosome 11 in an interval of 1.61-Mb genomic region. The candidate region was further shortened to a 108.9-kb genomic region by genotyping the 955 individuals with 14 SNP markers. Transcriptome analysis was further performed between the resistant and susceptible parents, yielding a total of 5044 differentially expressed genes (DEGs). There were four DEGs in the candidate QTL region, of which, two (Os11g0700900 and Os11g0704000) were upregulated and the remaining (Os11g0702400 and Os11g0703600) were downregulated in the susceptible parent after inoculation. These novel candidate genes were functionally annotated to catalytic response against disease stimulus in cellular membranes. The results were further validated by a quantitative real-time PCR analysis. The fine-mapping of a novel QTL for blast resistance by integrative BSA mapping and transcriptome sequencing enhanced the genetic understanding of the mechanism of blast resistance in upland rice. The most suitable genotypes with resistance alleles would be useful genetic resources in rice blast resistance breeding.
Collapse
Affiliation(s)
| | | | - Wen Chen
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Lu Huang
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Dailin Zhao
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Xiaojun Chen
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Jiye Li
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | | |
Collapse
|
5
|
Dimitrakopoulou ME, Panteleli E, Vantarakis A. Improved PCR-DGGE analysis by emulsion-PCR for the determination of food geographical origin: A case study on Greek PDO "avgotaracho Mesolonghiou". Curr Res Food Sci 2021; 4:746-751. [PMID: 34746808 PMCID: PMC8554341 DOI: 10.1016/j.crfs.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 11/15/2022] Open
Abstract
Greek avgotaracho Mesolonghiou (fish eggs from Flathead Mullet) is a highly valuable food product which holds Protected Destination of Origin status. The aim of this work was to use PCR-DGGE technique to examine whether there is a correlation between bacteria population in fish eggs and geographical origin. Cluster analysis of fish eggs from three geographical locations (Mesolonghi, Australia and Mauritania) discriminated samples according to their provenance. Moreover, we utilized emulsion-PCR amplification in DGGE analysis in order to investigate whether we could obtain further information about food products’ bacteria communities. PCR-DGGE proved to be a suitable method for fish eggs traceability, moreover emulsion PCR-DGGE provides better results. Emulsion-PCR can face up the existing limitations of conventional PCR and thus can be demonstrated as alternative molecular technique for complex and processed matrices, regarding food traceability and authentication. Traceability of Greek PDO “avgotaracho Mesolonghiou” by PCR-DGGE is presented. Emulsion PCR for DGGE” improves analysis of microbial communities. Emulsion PCR for DGGE improves geographical traceability of food. Emulsion PCR as an alternative molecular method for food traceability and authentication.
Collapse
Affiliation(s)
| | - Efstratia Panteleli
- Department of Public Health, Medical School, University of Patras, Patras, Greece
| | - Apostolos Vantarakis
- Department of Public Health, Medical School, University of Patras, Patras, Greece
| |
Collapse
|