1
|
Kessi-Pérez EI, Gómez M, Farías W, García V, Ganga MA, Querol A, Martínez C. Genetically Improved Yeast Strains with Lower Ethanol Yield for the Wine Industry Generated Through a Two-Round Breeding Program. J Fungi (Basel) 2025; 11:137. [PMID: 39997431 PMCID: PMC11855951 DOI: 10.3390/jof11020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Saccharomyces cerevisiae is a species of industrial significance in the production of alcoholic beverages; it is the main species responsible for the fermentation of grape must. One of the main current problems in the wine industry is high alcohol levels caused by climate change. Pre- and post-fermentation strategies are used to reduce the alcohol content in wines; however, they are inefficient, affect organoleptic properties, face legal restrictions, and/or increase production costs, which has motivated efforts to obtain microbiological solutions. In the present work, we carried out a two-round breeding program to obtain improved yeast strains with lower ethanol yield. The trait under study showed high heritability (0.619), and we were able to lower the ethanol yield by 10.7% in just one generation. We finally obtained a population composed of 132 strains, of which 6 were used to produce wine from natural grape musts on a pilot scale, highlighting improved strains "C2-1B4" and "C7-1B7" as those that showed the best results (alcohol levels between 0.3 and 1.5% ABV less than expected). Further studies are required to understand the connection between initial sugar concentration and ethanol yield, as well as the genetic variants underlying this phenotype.
Collapse
Affiliation(s)
- Eduardo I. Kessi-Pérez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (E.I.K.-P.); (M.G.); (V.G.)
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago 9170002, Chile;
| | - Melissa Gómez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (E.I.K.-P.); (M.G.); (V.G.)
| | - William Farías
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile;
| | - Verónica García
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (E.I.K.-P.); (M.G.); (V.G.)
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago 9170002, Chile;
| | - María Angélica Ganga
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago 9170002, Chile;
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, 46980 Valencia, Spain;
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (E.I.K.-P.); (M.G.); (V.G.)
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago 9170002, Chile;
| |
Collapse
|
2
|
Sánchez ML, Chimeno SV, Mercado LA, Ciklic IF. Hybridization and spore dissection of native wine yeasts for improvement of ethanol resistance and osmotolerance. World J Microbiol Biotechnol 2022; 38:225. [PMID: 36121519 DOI: 10.1007/s11274-022-03400-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
Global warming has a significant impact on different viticultural parameters, including grape maturation. An increment of photosynthetic activity generates a rapid accumulation of sugars in the berry, followed by a dehydration process which leads to a higher concentration of soluble solids. This effect is exacerbated by current viticultural practices which favor the harvest of very mature grapes to obtain wines with sweet tannins. Considering the initial hyperosmotic stress conditions and the high ethanol concentration of the produced wine, fermentation of grape musts with high sugar content could be problematic for yeast starters. In the present study, we were able to obtain by classical hybridization and spore dissection methods one hybrid and one monosporic wine yeast strain with a combined ethanol and osmotolerant phenotype. The improved yeasts were tested in vinification trials with high sugar concentration and displayed excellent fermentation performance. Importantly, the obtained wines also showed good organoleptic properties during sensory analysis. Based on our results, we believed our improved hybrid and monosporic strains can be considered good alternatives to be used as yeast starters for fermentations with high sugar content.
Collapse
Affiliation(s)
- María Laura Sánchez
- Departamento de Ciencias Enológicas y Agroalimentarias, Facultad de Ciencias Agrarias UNCUYO, Almirante Brown 500, 5505, Luján de Cuyo, Mendoza, Argentina
| | - Selva Valeria Chimeno
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), San Martín 3853, 5507, Luján de Cuyo, Mendoza, Argentina
| | - Laura Analía Mercado
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), San Martín 3853, 5507, Luján de Cuyo, Mendoza, Argentina
| | - Iván Francisco Ciklic
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), San Martín 3853, 5507, Luján de Cuyo, Mendoza, Argentina.
| |
Collapse
|
3
|
Kessi-Pérez EI, González A, Palacios JL, Martínez C. Yeast as a biological platform for vitamin D production: A promising alternative to help reduce vitamin D deficiency in humans. Yeast 2022; 39:482-492. [PMID: 35581681 DOI: 10.1002/yea.3708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
Abstract
Vitamin D is an important human hormone, known primarily to be involved in the intestinal absorption of calcium and phosphate, but it is also involved in various non-skeletal processes (molecular, cellular, immune, and neuronal). One of the main health problems nowadays is the vitamin D deficiency of the human population due to lack of sun exposure, with estimates of one billion people worldwide with vitamin D deficiency, and the consequent need for clinical intervention (i.e., prescription of pharmacological vitamin D supplements). An alternative to reduce vitamin D deficiency is to produce good dietary sources of it, a scenario in which the yeast Saccharomyces cerevisiae seems to be a promising alternative. This review focuses on the potential use of yeast as a biological platform to produce vitamin D, summarizing both the biology aspects of vitamin D (synthesis, ecology and evolution, metabolism, and bioequivalence) and the work done to produce it in yeast (both for vitamin D2 and for vitamin D3 ), highlighting existing challenges and potential solutions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Adens González
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - José Luis Palacios
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
4
|
A Saccharomyces eubayanus haploid resource for research studies. Sci Rep 2022; 12:5976. [PMID: 35396494 PMCID: PMC8993842 DOI: 10.1038/s41598-022-10048-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022] Open
Abstract
Since its identification, Saccharomyces eubayanus has been recognized as the missing parent of the lager hybrid, S. pastorianus. This wild yeast has never been isolated from fermentation environments, thus representing an interesting candidate for evolutionary, ecological and genetic studies. However, it is imperative to develop additional molecular genetics tools to ease manipulation and thus facilitate future studies. With this in mind, we generated a collection of stable haploid strains representative of three main lineages described in S. eubayanus (PB-1, PB-2 and PB-3), by deleting the HO gene using CRISPR-Cas9 and tetrad micromanipulation. Phenotypic characterization under different conditions demonstrated that the haploid derivates were extremely similar to their parental strains. Genomic analysis in three strains highlighted a likely low frequency of off-targets, and sequencing of a single tetrad evidenced no structural variants in any of the haploid spores. Finally, we demonstrate the utilization of the haploid set by challenging the strains under mass-mating conditions. In this way, we found that S. eubayanus under liquid conditions has a preference to remain in a haploid state, unlike S. cerevisiae that mates rapidly. This haploid resource is a novel set of strains for future yeast molecular genetics studies.
Collapse
|
5
|
|
6
|
Molinet J, Cubillos FA. Wild Yeast for the Future: Exploring the Use of Wild Strains for Wine and Beer Fermentation. Front Genet 2020; 11:589350. [PMID: 33240332 PMCID: PMC7667258 DOI: 10.3389/fgene.2020.589350] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/28/2020] [Indexed: 01/05/2023] Open
Abstract
The continuous usage of single Saccharomyces cerevisiae strains as starter cultures in fermentation led to the domestication and propagation of highly specialized strains in fermentation, resulting in the standardization of wines and beers. In this way, hundreds of commercial strains have been developed to satisfy producers’ and consumers’ demands, including beverages with high/low ethanol content, nutrient deprivation tolerance, diverse aromatic profiles, and fast fermentations. However, studies in the last 20 years have demonstrated that the genetic and phenotypic diversity in commercial S. cerevisiae strains is low. This lack of diversity limits alternative wines and beers, stressing the need to explore new genetic resources to differentiate each fermentation product. In this sense, wild strains harbor a higher than thought genetic and phenotypic diversity, representing a feasible option to generate new fermentative beverages. Numerous recent studies have identified alleles in wild strains that could favor phenotypes of interest, such as nitrogen consumption, tolerance to cold or high temperatures, and the production of metabolites, such as glycerol and aroma compounds. Here, we review the recent literature on the use of commercial and wild S. cerevisiae strains in wine and beer fermentation, providing molecular evidence of the advantages of using wild strains for the generation of improved genetic stocks for the industry according to the product style.
Collapse
Affiliation(s)
- Jennifer Molinet
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBIO), Santiago, Chile
| | - Francisco A Cubillos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBIO), Santiago, Chile
| |
Collapse
|
7
|
Next Generation Winemakers: Genetic Engineering in Saccharomyces cerevisiae for Trendy Challenges. Bioengineering (Basel) 2020; 7:bioengineering7040128. [PMID: 33066502 PMCID: PMC7712467 DOI: 10.3390/bioengineering7040128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
The most famous yeast of all, Saccharomyces cerevisiae, has been used by humankind for at least 8000 years, to produce bread, beer and wine, even without knowing about its existence. Only in the last century we have been fully aware of the amazing power of this yeast not only for ancient uses but also for biotechnology purposes. In the last decades, wine culture has become and more demanding all over the world. By applying as powerful a biotechnological tool as genetic engineering in S. cerevisiae, new horizons appear to develop fresh, improved, or modified wine characteristics, properties, flavors, fragrances or production processes, to fulfill an increasingly sophisticated market that moves around 31.4 billion € per year.
Collapse
|