1
|
Rodríguez-Martínez ES, Rios-Velasco C, Sepúlveda-Ahumada DR, Buenrostro-Figueroa JJ, Correia KC, Guigón-López C, Alvarado-González M. Trichoderma Species from Semiarid Regions and Their Antagonism Against the Microorganisms That Cause Pepper Wilt. J Fungi (Basel) 2025; 11:174. [PMID: 40137212 PMCID: PMC11942951 DOI: 10.3390/jof11030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Chili wilt is a significant challenge in producing jalapeño peppers, which has led to the implementation of strategies to help counteract or combat the microorganisms responsible for it. One of these strategies is the use of biological control microorganisms, such as Trichoderma, a fungus recognized as a natural enemy of the microorganisms that cause chili wilt. Therefore, this study aimed to isolate and identify Trichoderma species from the soils and roots of different plants, and evaluate their antagonism against Rhizoctonia solani, Phytophthora capsici, and Fusarium sp. Due to the complexity in identifying Trichoderma at the species level, performing a multilocus phylogenetic analysis was necessary, using the ITS, RPB2, and TEF1 regions. The species isolated were T. afroharzianum, T. lentiforme, T. rifaii, T. brevicompactum, T. arundinaceum, and T. longibrachiatum. Subsequently, they were used in three antagonism tests (dual culture, non-volatile organic compounds, and volatile organic compounds) against the phytopathogenic microorganisms. The tests demonstrated that the Trichoderma isolates could inhibit the mycelial growth of all three tested pathogens, obtaining the best results with the strains T. brevicompactum (19RCS), T. lentiforme (63DPS), T. longibrachiatum (71JES), T. rifaii (77JCR), and T. afroharzianum (24RQS, 87CCS, 88CCS and 17RCS). The strain with the best results in all three tests was 17RCS.
Collapse
Affiliation(s)
- Erika Sireni Rodríguez-Martínez
- Coordinación de Tecnología de Productos Hortofrutícolas y Lácteos, Centro de Investigación en Alimentación y Desarrollo, Cd. Delicias 33089, Chihuahua, Mexico; (E.S.R.-M.); (J.J.B.-F.)
| | - Claudio Rios-Velasco
- Coordinación de Tecnología de Alimentos de la Zona Templada, Centro de Investigación en Alimentación y Desarrollo, A.C., Avenida Río Conchos s/n, Parque Industrial, Cd. Cuauhtémoc 31570, Chihuahua, Mexico; (C.R.-V.); (D.R.S.-A.)
| | - David Roberto Sepúlveda-Ahumada
- Coordinación de Tecnología de Alimentos de la Zona Templada, Centro de Investigación en Alimentación y Desarrollo, A.C., Avenida Río Conchos s/n, Parque Industrial, Cd. Cuauhtémoc 31570, Chihuahua, Mexico; (C.R.-V.); (D.R.S.-A.)
| | - José Juan Buenrostro-Figueroa
- Coordinación de Tecnología de Productos Hortofrutícolas y Lácteos, Centro de Investigación en Alimentación y Desarrollo, Cd. Delicias 33089, Chihuahua, Mexico; (E.S.R.-M.); (J.J.B.-F.)
| | - Kamila C. Correia
- Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, Crato 63133-610, CE, Brazil;
| | - César Guigón-López
- Facultad de Ciencias Agrícolas y Forestales, Universidad Autónoma de Chihuahua, Km. 2.5 Carretera a Rosales, Poniente, Delicias 33000, Chihuahua, Mexico
| | - Mónica Alvarado-González
- Coordinación de Tecnología de Productos Hortofrutícolas y Lácteos, Centro de Investigación en Alimentación y Desarrollo, Cd. Delicias 33089, Chihuahua, Mexico; (E.S.R.-M.); (J.J.B.-F.)
| |
Collapse
|
2
|
Correa-Delgado R, Brito-López P, Jaizme Vega MC, Laich F. Biodiversity of Trichoderma species of healthy and Fusarium wilt-infected banana rhizosphere soils in Tenerife (Canary Islands, Spain). Front Microbiol 2024; 15:1376602. [PMID: 38800760 PMCID: PMC11122028 DOI: 10.3389/fmicb.2024.1376602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
Banana (Musa acuminata) is the most important crop in the Canary Islands (38.9% of the total cultivated area). The main pathogen affecting this crop is the soil fungal Fusarium oxysporum f. sp. cubense subtropical race 4 (Foc-STR4), for which there is no effective control method under field conditions. Therefore, the use of native biological control agents may be an effective and sustainable alternative. This study aims to: (i) investigate the diversity and distribution of Trichoderma species in the rhizosphere of different banana agroecosystems affected by Foc-STR4 in Tenerife (the island with the greatest bioclimatic diversity and cultivated area), (ii) develop and preserve a culture collection of native Trichoderma species, and (iii) evaluate the influence of soil chemical properties on the Trichoderma community. A total of 131 Trichoderma isolates were obtained from 84 soil samples collected from 14 farms located in different agroecosystems on the northern (cooler and wetter) and southern (warmer and drier) slopes of Tenerife. Ten Trichoderma species, including T. afroharzianum, T. asperellum, T. atrobrunneum, T. gamsii, T. guizhouense, T. hamatum, T. harzianum, T. hirsutum, T. longibrachiatum, and T. virens, and two putative novel species, named T. aff. harzianum and T. aff. hortense, were identified based on the tef1-α sequences. Trichoderma virens (35.89% relative abundance) and T. aff. harzianum (27.48%) were the most abundant and dominant species on both slopes, while other species were observed only on one slope (north or south). Biodiversity indices (Margalef, Shannon, Simpson, and Pielou) showed that species diversity and evenness were highest in the healthy soils of the northern slope. The Spearman analysis showed significant correlations between Trichoderma species and soil chemistry parameters (mainly with phosphorus and soil pH). To the best of our knowledge, six species are reported for the first time in the Canary Islands (T. afroharzianum, T. asperellum, T. atrobrunneum, T. guizhouense, T. hamatum, T. hirsutum) and in the rhizosphere of banana soils (T. afroharzianum, T. atrobrunneum, T. gamsii, T. guizhouense, T. hirsutum, T. virens). This study provides essential information on the diversity/distribution of native Trichoderma species for the benefit of future applications in the control of Foc-STR4.
Collapse
Affiliation(s)
| | | | | | - Federico Laich
- Unidad de Protección Vegetal, Instituto Canario de Investigaciones Agrarias, Valle de Guerra, Santa Cruz de Tenerife, Canary Islands, Spain
| |
Collapse
|
3
|
Yao X, Guo H, Zhang K, Zhao M, Ruan J, Chen J. Trichoderma and its role in biological control of plant fungal and nematode disease. Front Microbiol 2023; 14:1160551. [PMID: 37206337 PMCID: PMC10189891 DOI: 10.3389/fmicb.2023.1160551] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Trichoderma is mainly used to control soil-borne diseases as well as some leaf and panicle diseases of various plants. Trichoderma can not only prevent diseases but also promotes plant growth, improves nutrient utilization efficiency, enhances plant resistance, and improves agrochemical pollution environment. Trichoderma spp. also behaves as a safe, low-cost, effective, eco-friendly biocontrol agent for different crop species. In this study, we introduced the biological control mechanism of Trichoderma in plant fungal and nematode disease, including competition, antibiosis, antagonism, and mycoparasitism, as well as the mechanism of promoting plant growth and inducing plant systemic resistance between Trichoderma and plants, and expounded on the application and control effects of Trichoderma in the control of various plant fungal and nematode diseases. From an applicative point of view, establishing a diversified application technology for Trichoderma is an important development direction for its role in the sustainable development of agriculture.
Collapse
Affiliation(s)
- Xin Yao
- College of Agronomy, Guizhou University, Guiyang, China
| | - Hailin Guo
- Science and Technology Innovation Development Center of Bijie City, Bijie, China
| | - Kaixuan Zhang
- Institute of Crop Science, Chinese Academy of Agriculture Science, Beijing, China
| | - Mengyu Zhao
- College of Agronomy, Guizhou University, Guiyang, China
| | - Jingjun Ruan
- College of Agronomy, Guizhou University, Guiyang, China
- *Correspondence: Jingjun Ruan,
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Jie Chen,
| |
Collapse
|
4
|
Contreras-Cornejo HA, Macías-Rodríguez L, Larsen J. The Role of Secondary Metabolites in Rhizosphere Competence of Trichoderma. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Peng ZQ, Li C, Lin Y, Wu SS, Gan LH, Liu J, Yang SL, Zeng XH, Lin L. Cellulase production and efficient saccharification of biomass by a new mutant Trichoderma afroharzianum MEA-12. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:219. [PMID: 34809676 PMCID: PMC8607671 DOI: 10.1186/s13068-021-02072-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/10/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Cellulase plays a key role in converting cellulosic biomass into fermentable sugar to produce chemicals and fuels, which is generally produced by filamentous fungi. However, most of the filamentous fungi obtained by natural breeding have low secretory capacity in cellulase production, which are far from meeting the requirements of industrial production. Random mutagenesis combined with adaptive laboratory evolution (ALE) strategy is an effective method to increase the production of fungal enzymes. RESULTS This study obtained a mutant of Trichoderma afroharzianum by exposures to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), Ethyl Methanesulfonate (EMS), Atmospheric and Room Temperature Plasma (ARTP) and ALE with high sugar stress. The T. afroharzianum mutant MEA-12 produced 0.60, 5.47, 0.31 and 2.17 IU/mL FPase, CMCase, pNPCase and pNPGase, respectively. These levels were 4.33, 6.37, 4.92 and 4.15 times higher than those of the parental strain, respectively. Also, it was found that T. afroharzianum had the same carbon catabolite repression (CCR) effect as other Trichoderma in liquid submerged fermentation. In contrast, the mutant MEA-12 can tolerate the inhibition of glucose (up to 20 mM) without affecting enzyme production under inducing conditions. Interestingly, crude enzyme from MEA-12 showed high enzymatic hydrolysis efficiency against three different biomasses (cornstalk, bamboo and reed), when combined with cellulase from T. reesei Rut-C30. In addition, the factors that improved cellulase production by MEA-12 were clarified. CONCLUSIONS Overall, compound mutagenesis combined with ALE effectively increased the production of fungal cellulase. A super-producing mutant MEA-12 was obtained, and its cellulase could hydrolyze common biomasses efficiently, in combination with enzymes derived from model strain T. reesei, which provides a new choice for processing of bioresources in the future.
Collapse
Affiliation(s)
- Zhi-Qing Peng
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Chuang Li
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Yi Lin
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Sheng-Shan Wu
- College of Energy, Xiamen University, Xiamen, 361102, China
- Fujian Engineering and Research Centre of Clean and High-Valued Technologies for Biomass, Xiamen, 361102, China
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, Xiamen, 361102, China
| | - Li-Hui Gan
- College of Energy, Xiamen University, Xiamen, 361102, China
- Fujian Engineering and Research Centre of Clean and High-Valued Technologies for Biomass, Xiamen, 361102, China
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, Xiamen, 361102, China
| | - Jian Liu
- College of Energy, Xiamen University, Xiamen, 361102, China
- Fujian Engineering and Research Centre of Clean and High-Valued Technologies for Biomass, Xiamen, 361102, China
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, Xiamen, 361102, China
| | - Shu-Liang Yang
- College of Energy, Xiamen University, Xiamen, 361102, China
- Fujian Engineering and Research Centre of Clean and High-Valued Technologies for Biomass, Xiamen, 361102, China
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, Xiamen, 361102, China
| | - Xian-Hai Zeng
- College of Energy, Xiamen University, Xiamen, 361102, China.
- Fujian Engineering and Research Centre of Clean and High-Valued Technologies for Biomass, Xiamen, 361102, China.
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, Xiamen, 361102, China.
| | - Lu Lin
- College of Energy, Xiamen University, Xiamen, 361102, China
- Fujian Engineering and Research Centre of Clean and High-Valued Technologies for Biomass, Xiamen, 361102, China
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, Xiamen, 361102, China
| |
Collapse
|
6
|
Gong Y, Ding P, Xu MJ, Zhang CM, Xing K, Qin S. Biodegradation of phenol by a halotolerant versatile yeast Candida tropicalis SDP-1 in wastewater and soil under high salinity conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112525. [PMID: 33836438 DOI: 10.1016/j.jenvman.2021.112525] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/09/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
In this study, a novel halotolerant phenol-degrading yeast strain, SDP-1, was isolated from a coastal soil in Jiangsu, China, and identified as Candida tropicalis by morphology and rRNA internal transcribed space region sequence analysis. Strain SDP-1 can efficiently remove phenol at wide ranges of pH (3.0-9.0), temperature (20-40 °C), and NaCl (0-5%, w/v), as well as the tolerance of Mn2+, Zn2+ and Cr3+ in aquatic phase. It also utilized multiple phenol derivatives and aromatic hydrocarbons as sole carbon source and energy for growth. Free cells of SDP-1 were able to degrade the maximum phenol concentration of 1800 mg/L within 56 h under the optimum culture conditions of 10% inoculum volume, pH 8.0, 35 °C and 200 rpm agitation speed. Meanwhile, SDP-1 was immobilized on sodium alginate, and the capability of efficiently phenol degradation of free cells and immobilized SDP-1 were evaluated. Shortened degradation time and long-term utilization and recycling for immobilized SDP-1 was achieved compared to free cells. The 1200 mg/L of phenol under 5% NaCl stress could be completely degraded within 40 h by immobilized cells. In actual industrial coking wastewater, immobilized cells were able to completely remove 383 mg/L phenol within 20 h, and the corresponding chemical oxygen demand (COD) value was decreased by 50.38%. Besides, in phenol-contained salinity soil (3% NaCl), 100% of phenol (500 and 1000 mg/kg) removal efficiency was achieved by immobilized SDP-1 within 12 and 26 days, respectively. Our study suggested that versatile yeast Candida tropicalis SDP-1 could be potentially used for enhanced treatment of phenol-contaminated wastewater and soil under hypersaline or no-salt environmental conditions.
Collapse
Affiliation(s)
- Yuan Gong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Peng Ding
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Ming-Jie Xu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Chun-Mei Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Ke Xing
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China.
| |
Collapse
|