1
|
Ozbudak E, Carrillo-Tarazona Y, Diaz EA, Zambon FT, Rossi L, Peres NA, Raffaele S, Cano LM. Transcriptome analysis of Colletotrichum nymphaeae-Strawberry interaction reveals in planta expressed genes associated with virulence. FRONTIERS IN PLANT SCIENCE 2025; 15:1390926. [PMID: 39925370 PMCID: PMC11803528 DOI: 10.3389/fpls.2024.1390926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 11/05/2024] [Indexed: 02/11/2025]
Abstract
Colletotrichum nymphaeae, the causal agent of anthracnose fruit rot, is globally recognized as a major pathogen of strawberries due to its economic impact. Fungal pathogens utilize secreted proteins to facilitate infection by acquiring host nutrients and suppressing plant immunity. Understanding the transcriptomic responses of C. nymphaeae during infection can provide critical insights into its pathogenic mechanisms. In this study, RNA sequencing (RNA-seq) was performed to profile the transcriptome of C. nymphaeae strain 02-179 during infection of leaf and fruit tissues of the susceptible strawberry (Fragaria x ananassa) cultivar Florida Beauty. Differential gene expression analysis identified fungal genes upregulated during these interactions. Transcriptomic profiling revealed a set of genes encoding secreted effector proteins, including NUDIX hydrolase and LysM domain-containing proteins. Additionally, genes associated with Carbohydrate-Active enzymes (CAZymes), such as multicopper oxidase, pectinesterase, pectate lyase, glycosyl hydrolase family 7, and endochitinase, were significantly upregulated. Notably, two novel tannase genes were identified among the top upregulated genes in strawberry-infected leaves and fruits. Tannase enzymes are hypothesized to degrade tannins, a group of plant secondary metabolites abundant in strawberries, known for their defensive roles against pests and pathogens. The identification of tannase genes and the other genes associated with virulence underscores the complex molecular strategies employed by C. nymphaeae to infect and colonize strawberry tissues. Genes involved in degrading plant cell walls, suppressing host defenses, and potentially overcoming chemical barriers such as tannins play critical roles in the pathogenesis of anthracnose. Further functional characterization of these genes will enhance our understanding of the disease mechanisms and could inform the development of improved management strategies for C. nymphaeae infections in strawberries.
Collapse
Affiliation(s)
- Egem Ozbudak
- Indian River Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | - Yisel Carrillo-Tarazona
- Indian River Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| | - Edinson A. Diaz
- Indian River Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| | - Flavia T. Zambon
- Indian River Research and Education Center, Department of Horticultural Sciences, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| | - Lorenzo Rossi
- Indian River Research and Education Center, Department of Horticultural Sciences, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| | - Natalia A. Peres
- Gulf Coast Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Wimauma, FL, United States
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes Micro-organismes Environnement (LIPME), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Université de Toulouse, Castanet-Tolosan, France
| | - Liliana M. Cano
- Indian River Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| |
Collapse
|
2
|
Alkemade JA, Hohmann P, Messmer MM, Barraclough TG. Comparative Genomics Reveals Sources of Genetic Variability in the Asexual Fungal Plant Pathogen Colletotrichum lupini. MOLECULAR PLANT PATHOLOGY 2024; 25:e70039. [PMID: 39673077 PMCID: PMC11645255 DOI: 10.1111/mpp.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/15/2024]
Abstract
Fungal plant pathogens cause major crop losses worldwide, with many featuring compartmentalised genomes that include both core and accessory regions, which are believed to drive adaptation. The highly host-specific fungus Colletotrichum lupini greatly impacts lupin (Lupinus spp.) cultivation. This pathogen is part of clade 1 of the C. acutatum species complex and comprises four genetically uniform, presumably clonal, lineages (I-IV). Despite this, variation in virulence and morphology has been observed within these lineages. To investigate the potential sources of genetic variability in this asexual fungus, we compared the genomes of 16 C. lupini strains and 17 related Colletotrichum species. Phylogenomics confirmed the presence of four distinct lineages, but further examination based on genome size, gene content, transposable elements (TEs), and deletions revealed that lineage II could be split into two groups, II-A and II-B. TE content varied between lineages and correlated strongly with genome size variation, supporting a role for TEs in genome expansion in this species. Pangenome analysis revealed a highly variable accessory genome, including a minichromosome present in lineages II, III, and IV, but absent in lineage I. Accessory genes and effectors appeared to cluster in proximity to TEs. Presence/absence variation of putative effectors was lineage-specific, suggesting that these genes play a crucial role in determining host range. Notably, no effectors were found on the TE-rich minichromosome. Our findings shed light on the potential mechanisms generating genetic diversity in this asexual fungal pathogen that could aid future disease management.
Collapse
Affiliation(s)
- Joris A. Alkemade
- Department of BiologyUniversity of OxfordOxfordUK
- Calleva Research Centre for Evolution and Human ScienceMagdalen CollegeOxfordUK
- Department of Crop SciencesResearch Institute of Organic Agriculture (FiBL)FrickSwitzerland
| | - Pierre Hohmann
- Department of Crop SciencesResearch Institute of Organic Agriculture (FiBL)FrickSwitzerland
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food SciencesUniversitat de BarcelonaBarcelonaSpain
| | - Monika M. Messmer
- Department of Crop SciencesResearch Institute of Organic Agriculture (FiBL)FrickSwitzerland
| | - Timothy G. Barraclough
- Department of BiologyUniversity of OxfordOxfordUK
- Calleva Research Centre for Evolution and Human ScienceMagdalen CollegeOxfordUK
| |
Collapse
|
3
|
Gujjar RS, Kumar R, Goswami SK, Srivastava S, Kumar S. MAPK signaling pathway orchestrates and fine-tunes the pathogenicity of Colletotrichum falcatum. J Proteomics 2024; 292:105056. [PMID: 38043863 DOI: 10.1016/j.jprot.2023.105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/05/2023]
Abstract
Colletotrichum falcatum is the causal organism of red rot, the most devastating disease of sugarcane. Mitogen-activated protein kinase (MAPK) signaling pathway plays pivotal role in coordinating the process of pathogenesis. We identified eighteen proteins implicated in MAPK signaling pathway in C. falcatum, through nanoLCMS/MS based proteomics approach. Twelve of these proteins were the part of core MAPK signaling pathway, whereas remaining proteins were indirectly implicated in MAPK signaling. Majority of these proteins had enhanced abundance in C. falcatum samples cultured with host sugarcane stalks. To validate the findings, core MAPK pathway genes (MAPKKK-NSY1, MAPK 17-MAPK17, MAPKKK 5-MAPKKK5, MAPK-HOG1B, MAPKKK-MCK1/STE11, MAPK-MST50/STE50, MAPKK-SEK1, MAPKK-MEK1/MST7/STE7, MAPKK-MKK2/STE7, MAPKKK-MST11/STE11, MAPK 5-MPK5, and MAPK-MPK-C) were analyzed by qPCR to confirm the real-time expression in C. falcatum samples cultured with host sugarcane stalks. The results of qPCR-based expression of genes were largely in agreement with the findings of proteomics. String association networks of MAPKK- MEK1/MST7/STE7, and MAPK- MPK-C revealed strong association with plenty of assorted proteins implicated in the process of pathogenesis/virulence. This is the novel and first large scale study of MAPK proteins in C. falcatum, responsible for red rot epidemics of sugarcane various countries. KEY MESSAGE: Our findings demonstrate the pivotal role of MAPK proteins in orchestrating the pathogenicity of Colletotrichum falcatum, responsible devastating red rot disease of sugarcane. SIGNIFICANCE: Our findings are novel and the first large scale study demonstrating the pivotal role of MAPK proteins in C. falcatum, responsible devastating red rot disease of sugarcane. The study will be useful for future researchers in terms of manipulating the fungal pathogenicity through genome editing.
Collapse
Affiliation(s)
- Ranjit Singh Gujjar
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India.
| | - Rajeev Kumar
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India
| | | | - Sangeeta Srivastava
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India
| | - Sanjeev Kumar
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India
| |
Collapse
|
4
|
Boufleur TR, Massola Júnior NS, Becerra S, Baraldi E, Bibiano LBJ, Sukno SA, Thon MR, Baroncelli R. Comparative transcriptomic provides novel insights into the soybean response to Colletotrichum truncatum infection. FRONTIERS IN PLANT SCIENCE 2022; 13:1046418. [PMID: 36507428 PMCID: PMC9732023 DOI: 10.3389/fpls.2022.1046418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Introduction Soybean (Glycine max) is among the most important crops in the world, and its production can be threatened by biotic diseases, such as anthracnose. Soybean anthracnose is a seed-borne disease mainly caused by the hemibiotrophic fungus Colletotrichum truncatum. Typical symptoms are pre- and post-emergence damping off and necrotic lesions on cotyledons, petioles, leaves, and pods. Anthracnose symptoms can appear early in the field, causing major losses to soybean production. Material and Methods In preliminary experiments, we observed that the same soybean cultivar can have a range of susceptibility towards different strains of C. truncatum, while the same C. truncatum strain can cause varying levels of disease severity in different soybean cultivars. To gain a better understanding of the molecular mechanisms regulating the early response of different soybean cultivars to different C. truncatum strains, we performed pathogenicity assays to select two soybean cultivars with significantly different susceptibility to two different C. truncatum strains and analyzed their transcriptome profiles at different time points of interaction (0, 12, 48, and 120 h post-inoculation, hpi). Results and Discussion The pathogenicity assays showed that the soybean cultivar Gm1 is more resistant to C. truncatum strain 1080, and it is highly susceptible to strain 1059, while cultivar Gm2 shows the opposite behavior. However, if only trivial anthracnose symptoms appeared in the more resistant phenotype (MRP; Gm1-1080; Gm2-1059) upon 120 hpi, in the more susceptible phenotype (MSP; Gm-1059; Gm2- 1080) plants show mild symptoms already at 72 hpi, after which the disease evolved rapidly to severe necrosis and plant death. Interestingly, several genes related to different cellular responses of the plant immune system (pathogen recognition, signaling events, transcriptional reprogramming, and defense-related genes) were commonly modulated at the same time points only in both MRP. The list of differentially expressed genes (DEGs) specific to the more resistant combinations and related to different cellular responses of the plant immune system may shed light on the important host defense pathways against soybean anthracnose.
Collapse
Affiliation(s)
- Thaís R. Boufleur
- Department of Plant Pathology and Nematology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca (USAL), Villamayor, Spain
| | - Nelson S. Massola Júnior
- Department of Plant Pathology and Nematology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Sioly Becerra
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca (USAL), Villamayor, Spain
| | - Elena Baraldi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Líllian B. J. Bibiano
- Department of Plant Pathology and Nematology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Serenella A. Sukno
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca (USAL), Villamayor, Spain
| | - Michael R. Thon
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca (USAL), Villamayor, Spain
| | - Riccardo Baroncelli
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca (USAL), Villamayor, Spain
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Guilengue N, Silva MDC, Talhinhas P, Neves-Martins J, Loureiro A. Subcuticular−Intracellular Hemibiotrophy of Colletotrichum lupini in Lupinus mutabilis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3028. [PMID: 36432755 PMCID: PMC9696939 DOI: 10.3390/plants11223028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Anthracnose caused by Colletotrichum lupini is the most important disease affecting lupin cultivation worldwide. Lupinus mutabilis has been widely studied due to its high protein and oil content. However, it has proved to be sensitive to anthracnose, which limits the expansion of its cultivation. In this work, we seek to unveil the strategy that is used by C. lupini to infect and colonize L. mutabilis tissues using light and transmission electron microscopy (TEM). On petioles, pathogen penetration occurred from melanized appressoria, subcuticular intramural hyphae were seen 2 days after inoculation (dai), and the adjacent host cells remained intact. The switch to necrotrophy was observed 3 dai. At this time, the hyphae extended their colonization to the epidermal, cortex, and vascular cells. Wall degradation was more evident in the epidermal cells. TEM observations also revealed a loss of plasma membrane integrity and different levels of cytoplasm disorganization in the infected epidermal cells and in those of the first layers of the cortex. The disintegration of organelles occurred and was particularly visible in the chloroplasts. The necrotrophic phase culminated with the development of acervuli 6 dai. C. lupini used the same infection strategy on stems, but there was a delay in the penetration of host tissues and the appearance of the first symptoms.
Collapse
Affiliation(s)
- Norberto Guilengue
- Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
- Agricultural Faculty, Agricultural Engineering Course, Instituto Superior Politécnico de Gaza, Lionde, Chókwè 1204, Mozambique
| | - Maria do Céu Silva
- CIFC, Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Pólo de Oeiras, 2784-505 Oeiras, Portugal
- LEAF, Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Pedro Talhinhas
- LEAF, Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - João Neves-Martins
- Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Andreia Loureiro
- LEAF, Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| |
Collapse
|
6
|
Duan Y, Li Q, Zhou J, Zhao H, Zhao Z, Wang L, Luo M, Du J, Dong Z. Studies on the molecular level changes and potential resistance mechanism of Coreius guichenoti under temperature stimulation. Front Genet 2022; 13:1015505. [PMID: 36263436 PMCID: PMC9574000 DOI: 10.3389/fgene.2022.1015505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, we used transcriptome and proteome technology to analyze molecular level changes in tissues of Coreius guichenoti cultured at high temperature (HT) and low temperature (LT). We also screened for specific anti-stress genes and proteins and evaluated the relationships between them. We identified 201,803 unigenes and 10,623 proteins. Compared with the normal temperature (NT), 408 genes and 1,204 proteins were up- or down-regulated in brain tissues, respectively, at HT, and the numbers were 8 and 149 at LT. In gill tissues, the numbers were 101 and 1,745 at HT and 27 and 511 at LT. In gill tissues at both temperatures, the degree of down-regulation (average, HT 204.67-fold, LT 443.13-fold) was much greater than that of up-regulation (average, HT 28.69-fold, LT 17.68-fold). The protein expression in brain (average, up 52.67-fold, down 13.54-fold) and gill (average, up 73.02-fold, down 12.92-fold) tissues increased more at HT than at LT. The protein expression in brain (up 3.77-fold, down 4.79-fold) tissues decreased more at LT than at HT, whereas the protein expression in gill (up 8.64-fold, down 4.35-fold) tissues was up-regulated more at LT than at HT. At HT, brain tissues were mainly enriched in pathways related to metabolism and DNA repair; at LT, they were mainly enriched in cancer-related pathways. At both temperatures, gill tissues were mainly enriched in pathways related to cell proliferation, apoptosis, immunity, and inflammation. Additionally, Kyoto Encyclopedia of Genes and Genomes pathway analysis showed more differentially expressed proteins in gill tissues than in brain tissues at HT and LT, and temperature stimulation led to the strengthening of metabolic pathways in both tissues. Of the 96 genes we identified as potentially being highly related to temperature stress (59 from transcriptome and 38 from proteome data), we detected heat shock protein 70 in both the transcriptome and proteome. Our results improved our understanding of the differential relationship between gene expression and protein expression in C. guichenoti. Identifying important temperature stress genes will help lay a foundation for cultivating C. guichenoti, and even other fish species, that are resistant to HT or LT.
Collapse
Affiliation(s)
- Yuanliang Duan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qiang Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jian Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Han Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zhongmeng Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lanmei Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
| | - Mingkun Luo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
| | - Jun Du
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
- *Correspondence: Zaijie Dong,
| |
Collapse
|
7
|
Pathogenicity Factors of Botryosphaeriaceae Associated with Grapevine Trunk Diseases: New Developments on Their Action on Grapevine Defense Responses. Pathogens 2022; 11:pathogens11080951. [PMID: 36015071 PMCID: PMC9415585 DOI: 10.3390/pathogens11080951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Botryosphaeriaceae are a family of fungi associated with the decay of a large number of woody plants with economic importance and causing particularly great losses in viticulture due to grapevine trunk diseases. In recent years, major advances in the knowledge of the pathogenicity factors of these pathogens have been made possible by the development of next-generation sequencing. This review highlights the knowledge gained on genes encoding small secreted proteins such as effectors, carbohydrate-associated enzymes, transporters and genes associated with secondary metabolism, their representativeness within the Botryosphaeriaceae family and their expression during grapevine infection. These pathogenicity factors are particularly expressed during host-pathogen interactions, facilitating fungal development and nutrition, wood colonization, as well as manipulating defense pathways and inducing impacts at the cellular level and phytotoxicity. This work highlights the need for further research to continue the effort to elucidate the pathogenicity mechanisms of this family of fungi infecting grapevine in order to improve the development of control methods and varietal resistance and to reduce the development and the effects of the disease on grapevine harvest quality and yield.
Collapse
|
8
|
A successful defense of the narrow-leafed lupin against anthracnose involves quick and orchestrated reprogramming of oxidation-reduction, photosynthesis and pathogenesis-related genes. Sci Rep 2022; 12:8164. [PMID: 35581248 PMCID: PMC9114385 DOI: 10.1038/s41598-022-12257-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022] Open
Abstract
Narrow-leafed lupin (NLL, Lupinus angustifolius L.) is a legume plant cultivated for grain production and soil improvement. Worldwide expansion of NLL as a crop attracted various pathogenic fungi, including Colletotrichum lupini causing a devastating disease, anthracnose. Two alleles conferring improved resistance, Lanr1 and AnMan, were exploited in NLL breeding, however, underlying molecular mechanisms remained unknown. In this study, European NLL germplasm was screened with Lanr1 and AnMan markers. Inoculation tests in controlled environment confirmed effectiveness of both resistance donors. Representative resistant and susceptible lines were subjected to differential gene expression profiling. Resistance to anthracnose was associated with overrepresentation of "GO:0006952 defense response", "GO:0055114 oxidation-reduction process" and "GO:0015979 photosynthesis" gene ontology terms. Moreover, the Lanr1 (83A:476) line revealed massive transcriptomic reprogramming quickly after inoculation, whereas other lines showed such a response delayed by about 42 h. Defense response was associated with upregulation of TIR-NBS, CC-NBS-LRR and NBS-LRR genes, pathogenesis-related 10 proteins, lipid transfer proteins, glucan endo-1,3-beta-glucosidases, glycine-rich cell wall proteins and genes from reactive oxygen species pathway. Early response of 83A:476, including orchestrated downregulation of photosynthesis-related genes, coincided with the successful defense during fungus biotrophic growth phase, indicating effector-triggered immunity. Mandelup response was delayed and resembled general horizontal resistance.
Collapse
|
9
|
Alkemade JA, Nazzicari N, Messmer MM, Annicchiarico P, Ferrari B, Voegele RT, Finckh MR, Arncken C, Hohmann P. Genome-wide association study reveals white lupin candidate gene involved in anthracnose resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1011-1024. [PMID: 34988630 PMCID: PMC8942938 DOI: 10.1007/s00122-021-04014-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/06/2021] [Indexed: 05/11/2023]
Abstract
GWAS identifies candidate gene controlling resistance to anthracnose disease in white lupin. White lupin (Lupinus albus L.) is a promising grain legume to meet the growing demand for plant-based protein. Its cultivation, however, is severely threatened by anthracnose disease caused by the fungal pathogen Colletotrichum lupini. To dissect the genetic architecture for anthracnose resistance, genotyping by sequencing was performed on white lupin accessions collected from the center of domestication and traditional cultivation regions. GBS resulted in 4611 high-quality single-nucleotide polymorphisms (SNPs) for 181 accessions, which were combined with resistance data observed under controlled conditions to perform a genome-wide association study (GWAS). Obtained disease phenotypes were shown to highly correlate with overall three-year disease assessments under Swiss field conditions (r > 0.8). GWAS results identified two significant SNPs associated with anthracnose resistance on gene Lalb_Chr05_g0216161 encoding a RING zinc-finger E3 ubiquitin ligase which is potentially involved in plant immunity. Population analysis showed a remarkably fast linkage disequilibrium decay, weak population structure and grouping of commercial varieties with landraces, corresponding to the slow domestication history and scarcity of modern breeding efforts in white lupin. Together with 15 highly resistant accessions identified in the resistance assay, our findings show promise for further crop improvement. This study provides the basis for marker-assisted selection, genomic prediction and studies aimed at understanding anthracnose resistance mechanisms in white lupin and contributes to improving breeding programs worldwide.
Collapse
Affiliation(s)
- Joris A Alkemade
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Nelson Nazzicari
- Research Centre for Animal Production and Aquaculture, CREA, Lodi, Italy
| | - Monika M Messmer
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland.
| | | | - Barbara Ferrari
- Research Centre for Animal Production and Aquaculture, CREA, Lodi, Italy
| | - Ralf T Voegele
- Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Maria R Finckh
- Department of Ecological Plant Protection, University of Kassel, Witzenhausen, Germany
| | - Christine Arncken
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Pierre Hohmann
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| |
Collapse
|
10
|
Baroncelli R, Pensec F, Da Lio D, Boufleur T, Vicente I, Sarrocco S, Picot A, Baraldi E, Sukno S, Thon M, Le Floch G. Complete Genome Sequence of the Plant-Pathogenic Fungus Colletotrichum lupini. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1461-1464. [PMID: 34402629 DOI: 10.1094/mpmi-07-21-0173-a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colletotrichum is a fungal genus (Ascomycota, Sordariomycetes, Glomerellaceae) that includes many economically important plant pathogens that cause devastating diseases of a wide range of plants. In this work, using a combination of long- and short-read sequencing technologies, we sequenced the genome of Colletotrichum lupini RB221, isolated from white lupin (Lupinus albus) in France during a survey in 2014. The genome was assembled into 11 nuclear chromosomes and a mitochondrial genome with a total assembly size of 63.41 Mb and 36.55 kb, respectively. In total, 18,324 protein-encoding genes have been predicted, of which only 39 are specific to C. lupini. This resource will provide insight into pathogenicity factors and will help provide a better understanding of the evolution and genome structure of this important plant pathogen.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Riccardo Baroncelli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127 Bologna, Italy
| | - Flora Pensec
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM), Univ Brest, 29280 Plouzané, France
| | - Daniele Da Lio
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM), Univ Brest, 29280 Plouzané, France
| | - Thais Boufleur
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900, São Paulo, Brazil
| | - Isabel Vicente
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, 56124 Pisa, Italy
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, 56124 Pisa, Italy
| | - Adeline Picot
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM), Univ Brest, 29280 Plouzané, France
| | - Elena Baraldi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127 Bologna, Italy
| | - Serenella Sukno
- Institute for Agribiotechnology Research (CIALE), University of Salamanca, 37185 Villamayor, Spain
| | - Michael Thon
- Institute for Agribiotechnology Research (CIALE), University of Salamanca, 37185 Villamayor, Spain
| | - Gaetan Le Floch
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM), Univ Brest, 29280 Plouzané, France
| |
Collapse
|
11
|
Boufleur TR, Massola Júnior NS, Tikami Í, Sukno SA, Thon MR, Baroncelli R. Identification and Comparison of Colletotrichum Secreted Effector Candidates Reveal Two Independent Lineages Pathogenic to Soybean. Pathogens 2021; 10:pathogens10111520. [PMID: 34832675 PMCID: PMC8625359 DOI: 10.3390/pathogens10111520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Colletotrichum is one of the most important plant pathogenic genus of fungi due to its scientific and economic impact. A wide range of hosts can be infected by Colletotrichum spp., which causes losses in crops of major importance worldwide, such as soybean. Soybean anthracnose is mainly caused by C. truncatum, but other species have been identified at an increasing rate during the last decade, becoming one of the most important limiting factors to soybean production in several regions. To gain a better understanding of the evolutionary origin of soybean anthracnose, we compared the repertoire of effector candidates of four Colletotrichum species pathogenic to soybean and eight species not pathogenic. Our results show that the four species infecting soybean belong to two lineages and do not share any effector candidates. These results strongly suggest that two Colletotrichum lineages have acquired the capability to infect soybean independently. This study also provides, for each lineage, a set of candidate effectors encoding genes that may have important roles in pathogenicity towards soybean offering a new resource useful for further research on soybean anthracnose management.
Collapse
Affiliation(s)
- Thaís R. Boufleur
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo, Brazil; (N.S.M.J.); (Í.T.)
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, 37185 Villamayor, Salamanca, Spain; (S.A.S.); (M.R.T.)
- Correspondence: (T.R.B.); (R.B.)
| | - Nelson S. Massola Júnior
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo, Brazil; (N.S.M.J.); (Í.T.)
| | - Ísis Tikami
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo, Brazil; (N.S.M.J.); (Í.T.)
| | - Serenella A. Sukno
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, 37185 Villamayor, Salamanca, Spain; (S.A.S.); (M.R.T.)
| | - Michael R. Thon
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, 37185 Villamayor, Salamanca, Spain; (S.A.S.); (M.R.T.)
| | - Riccardo Baroncelli
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, 37185 Villamayor, Salamanca, Spain; (S.A.S.); (M.R.T.)
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 44, 40126 Bologna, Italy
- Correspondence: (T.R.B.); (R.B.)
| |
Collapse
|
12
|
Chakraborty A, Ray P. Mycoherbicides for the Noxious Meddlesome: Can Colletotrichum be a Budding Candidate? Front Microbiol 2021; 12:754048. [PMID: 34659190 PMCID: PMC8515123 DOI: 10.3389/fmicb.2021.754048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/06/2021] [Indexed: 12/05/2022] Open
Abstract
Invasive plant species are a major threat to biodiversity and agricultural productivity. Hence, efforts to manage these menace involves extensive and effective use of chemical herbicides amongst others. However, not only is the impact of control with chemical herbicides short-lived but also leads to negative impact on human health and environment due to non-target herbicide-drift and runoff from the sprayed areas. This has ushed in much-anticipated nature-based potential regulators of weed species, in an attempt to lower the utilisation of chemical herbicides. Mycoherbicides have been seen as a benign, eco-friendly, host-specific, and replacement for chemical herbicides. There are several noteworthy genera of fungus that have been proved to be effective against weeds. They either produce strong phytotoxins or are often used as spore/conidia-based solutions and applied as a spray in growth media. One of such potential genera is Colletotrichum Corda 1831. Compared to other potent fungal genera, with well-established roles in conferring herbicidal activities by producing competent phytotoxins, only a few species under genus Colletotrichum are known to produce fungal metabolites be used as phytotoxins. This article elucidates the current understanding of using spore suspension/phytotoxin of Colletotrichum as a weedicide. We also discuss the interaction between fungal metabolites release and Colletotrichum-target plant, from a molecular and biochemical point of view. This review article has been written to accentuate on the potency of Colletotrichum, and to serve as an eye-opener to consider this genus for further fruitful investigations. However, inconsistency associated with mycoherbicides in terms of viability and efficacy under field conditions, production of bioactive compound, slow natural dispersal ability, etc., have often reduced their utility. Hence, our study emphasizes on the need to do extensive research in elucidating more phytotoxins from necrotrophic phytopathogenic microorganisms with novel mode of action for field application.
Collapse
Affiliation(s)
- Anwesha Chakraborty
- Multitrophic Interactions and Biocontrol Research Laboratory, Department of Life Sciences, Presidency University, Kolkata, India
| | - Puja Ray
- Multitrophic Interactions and Biocontrol Research Laboratory, Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
13
|
Chanda K, Mozumder AB, Chorei R, Gogoi RK, Prasad HK. A Lignocellulolytic Colletotrichum sp. OH with Broad-Spectrum Tolerance to Lignocellulosic Pretreatment Compounds and Derivatives and the Efficiency to Produce Hydrogen Peroxide and 5-Hydroxymethylfurfural Tolerant Cellulases. J Fungi (Basel) 2021; 7:785. [PMID: 34682207 PMCID: PMC8540663 DOI: 10.3390/jof7100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 10/25/2022] Open
Abstract
Fungal endophytes are an emerging source of novel traits and biomolecules suitable for lignocellulosic biomass treatment. This work documents the toxicity tolerance of Colletotrichum sp. OH toward various lignocellulosic pretreatment-derived inhibitors. The effects of aldehydes (vanillin, p-hydroxybenzaldehyde, furfural, 5-hydroxymethylfurfural; HMF), acids (gallic, formic, levulinic, and p-hydroxybenzoic acid), phenolics (hydroquinone, p-coumaric acid), and two pretreatment chemicals (hydrogen peroxide and ionic liquid), on the mycelium growth, biomass accumulation, and lignocellulolytic enzyme activities, were tested. The reported Colletotrichum sp. OH was naturally tolerant to high concentrations of single inhibitors like HMF (IC50; 17.5 mM), levulinic acid (IC50; 29.7 mM), hydroquinone (IC50; 10.76 mM), and H2O2 (IC50; 50 mM). The lignocellulolytic enzymes displayed a wide range of single and mixed inhibitor tolerance profiles. The enzymes β-glucosidase and endoglucanase showed H2O2- and HMF-dependent activity enhancements. The enzyme β-glucosidase activity was 34% higher in 75 mM and retained 20% activity in 125 mM H2O2. Further, β-glucosidase activity increased to 24 and 32% in the presence of 17.76 and 8.8 mM HMF. This research suggests that the Colletotrichum sp. OH, or its enzymes, can be used to pretreat plant biomass, hydrolyze it, and remove inhibitory by-products.
Collapse
Affiliation(s)
| | | | | | | | - Himanshu Kishore Prasad
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India; (K.C.); (A.B.M.); (R.C.); (R.K.G.)
| |
Collapse
|
14
|
Genetic diversity of Colletotrichum lupini and its virulence on white and Andean lupin. Sci Rep 2021; 11:13547. [PMID: 34188142 PMCID: PMC8242092 DOI: 10.1038/s41598-021-92953-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Lupin cultivation worldwide is threatened by anthracnose, a destructive disease caused by the seed- and air-borne fungal pathogen Colletotrichum lupini. In this study we explored the intraspecific diversity of 39 C. lupini isolates collected from different lupin cultivating regions around the world, and representative isolates were screened for their pathogenicity and virulence on white and Andean lupin. Multi-locus phylogeny and morphological characterizations showed intraspecific diversity to be greater than previously shown, distinguishing a total of six genetic groups and ten distinct morphotypes. Highest diversity was found across South America, indicating it as the center of origin of C. lupini. The isolates that correspond to the current pandemic belong to a genetic and morphological uniform group, were globally widespread, and showed high virulence on tested white and Andean lupin accessions. Isolates belonging to the other five genetic groups were mostly found locally and showed distinct virulence patterns. Two highly virulent strains were shown to overcome resistance of advanced white lupin breeding material. This stresses the need to be careful with international seed transports in order to prevent spread of currently confined but potentially highly virulent strains. This study improves our understanding of the diversity, phylogeography and pathogenicity of a member of one of the world's top 10 plant pathogen genera, providing valuable information for breeding programs and future disease management.
Collapse
|
15
|
Alkemade JA, Messmer MM, Arncken C, Leska A, Annicchiarico P, Nazzicari N, Książkiewicz M, Voegele RT, Finckh MR, Hohmann P. A High-Throughput Phenotyping Tool to Identify Field-Relevant Anthracnose Resistance in White Lupin. PLANT DISEASE 2021; 105:1719-1727. [PMID: 33337235 DOI: 10.1094/pdis-07-20-1531-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The seed- and air-borne pathogen Colletotrichum lupini, the causal agent of lupin anthracnose, is the most important disease in white lupin (Lupinus albus) worldwide and can cause total yield loss. The aims of this study were to establish a reliable high-throughput phenotyping tool to identify anthracnose resistance in white lupin germplasm and to evaluate a genomic prediction model, accounting for previously reported resistance quantitative trait loci, on a set of independent lupin genotypes. Phenotyping under controlled conditions, performing stem inoculation on seedlings, showed to be applicable for high throughput, and its disease score strongly correlated with field plot disease assessments (r = 0.95, P < 0.0001) and yield (r = -0.64, P = 0.035). Traditional one-row field disease phenotyping showed no significant correlation with field plot disease assessments (r = 0.31, P = 0.34) and yield (r = -0.45, P = 0.17). Genomically predicted resistance values showed no correlation with values observed under controlled or field conditions, and the parental lines of the recombinant inbred line population used for constructing the prediction model exhibited a resistance pattern opposite to that displayed in the original (Australian) environment used for model construction. Differing environmental conditions, inoculation procedures, or population structure may account for this result. Phenotyping a diverse set of 40 white lupin accessions under controlled conditions revealed eight accessions with improved resistance to anthracnose. The standardized area under the disease progress curves (sAUDPC) ranged from 2.1 to 2.8, compared with the susceptible reference accession with a sAUDPC of 3.85. These accessions can be incorporated into white lupin breeding programs. In conclusion, our data support stem inoculation-based disease phenotyping under controlled conditions as a time-effective approach to identify field-relevant resistance, which can now be applied to further identify sources of resistance and their underlying genetics.
Collapse
Affiliation(s)
- Joris A Alkemade
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Monika M Messmer
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Christine Arncken
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Agata Leska
- Getreidezüchtung Peter Kunz (gzpk), Feldbach, Switzerland
| | | | - Nelson Nazzicari
- CREA, Research Centre for Animal Production and Aquaculture, Lodi, Italy
| | | | - Ralf T Voegele
- Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Maria R Finckh
- Department of Ecological Plant Protection, University of Kassel, Witzenhausen, Germany
| | - Pierre Hohmann
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| |
Collapse
|
16
|
Fang H, Liu X, Dong Y, Feng S, Zhou R, Wang C, Ma X, Liu J, Yang KQ. Transcriptome and proteome analysis of walnut (Juglans regia L.) fruit in response to infection by Colletotrichum gloeosporioides. BMC PLANT BIOLOGY 2021; 21:249. [PMID: 34059002 PMCID: PMC8166054 DOI: 10.1186/s12870-021-03042-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/13/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Walnut anthracnose induced by Colletotrichum gloeosporioides is a disastrous disease affecting walnut production. The resistance of walnut fruit to C. gloeosporioides is a highly complicated and genetically programmed process. However, the underlying mechanisms have not yet been elucidated. RESULTS To understand the molecular mechanism underlying the defense of walnut to C. gloeosporioides, we used RNA sequencing and label-free quantitation technologies to generate transcriptomic and proteomic profiles of tissues at various lifestyle transitions of C. gloeosporioides, including 0 hpi, pathological tissues at 24 hpi, 48 hpi, and 72 hpi, and distal uninoculated tissues at 120 hpi, in anthracnose-resistant F26 fruit bracts and anthracnose-susceptible F423 fruit bracts, which were defined through scanning electron microscopy. A total of 21,798 differentially expressed genes (DEGs) and 1929 differentially expressed proteins (DEPs) were identified in F26 vs. F423 at five time points, and the numbers of DEGs and DEPs were significantly higher in the early infection stage. Using pairwise comparisons and weighted gene co-expression network analysis of the transcriptome, we identified two modules significantly related to disease resistance and nine hub genes in the transcription expression gene networks. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of the DEGs and DEPs revealed that many genes were mainly related to immune response, plant hormone signal transduction, and secondary metabolites, and many DEPs were involved in carbon metabolism and photosynthesis. Correlation analysis between the transcriptome data and proteome data also showed that the consistency of the differential expression of the mRNA and corresponding proteins was relatively higher in the early stage of infection. CONCLUSIONS Collectively, these results help elucidate the molecular response of walnut fruit to C. gloeosporioides and provide a basis for the genetic improvement of walnut disease resistance.
Collapse
Affiliation(s)
- Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
- State Forestry and Grassland Administr, ation Key Laboratory of Silviculture inthe Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an, Shandong Province, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Xia Liu
- Department of Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
- State Forestry and Grassland Administr, ation Key Laboratory of Silviculture inthe Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an, Shandong Province, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Shan Feng
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Rui Zhou
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Xinmei Ma
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Jianning Liu
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China.
- State Forestry and Grassland Administr, ation Key Laboratory of Silviculture inthe Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an, Shandong Province, China.
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai'an, Shandong Province, China.
| |
Collapse
|