1
|
Yap M, O'Sullivan O, O'Toole PW, Sheehan JJ, Fenelon MA, Cotter PD. Seasonal and geographical impact on the Irish raw milk microbiota correlates with chemical composition and climatic variables. mSystems 2024; 9:e0129023. [PMID: 38445870 PMCID: PMC11019797 DOI: 10.1128/msystems.01290-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Season and location have previously been shown to be associated with differences in the microbiota of raw milk, especially in milk from pasture-based systems. Here, we further advance research in this area by examining differences in the raw milk microbiota from several locations across Ireland over 12 months, and by investigating microbiota associations with climatic variables and chemical composition. Shotgun metagenomic sequencing was used to investigate the microbiota of raw milk collected from nine locations (n = 241). Concurrent chemical analysis of the protein, fat, lactose, total solids, nonprotein nitrogen contents, and titratable acidity (TA) of the same raw milk were performed. Although the raw milk microbiota was highly diverse, a core microbiota was found, with Pseudomonas_E, Lactococcus, Acinetobacter, and Leuconostoc present in all samples. Microbiota diversity significantly differed by season and location, with differences in seasonality and geography corresponding to 11.8% and 10.5% of the variation in the microbiota. Functional and antibiotic resistance profiles also varied across season and location. The analysis of other metadata revealed additional interactions, such as an association between mean daily air and grass temperatures with the abundance of spoilage taxa like Pseudomonas species. Correlations were identified between pathogenic, mastitis-related species, fat content, and the number of sun hours, suggesting a seasonal effect. Ultimately, this study expands our understanding of the interconnected nature of the microbiota, environment/climate variables, and chemical composition of raw milk and provides evidence of a season- and location-specific microbiota. IMPORTANCE The microbiota of raw milk is influenced by many factors that encourage or prevent the introduction and growth of both beneficial and undesirable microorganisms. The seasonal and geographical impacts on the microbial communities of raw milk have been previously seen, but the relationships with environmental factors and the chemical composition has yet to be investigated. In this year-long study, we found that while raw milk is highly diverse, a core microbiota was detected for Irish raw milk, with strong evidence of seasonal and geographical influence. We also found associations between groups of microorganisms, environmental factors, and milk composition, which expand current knowledge on the relationships between microbial and chemical composition and the climate. These results provide evidence for the development of a tool to allow for the prediction of raw milk quality and safety.
Collapse
Affiliation(s)
- Min Yap
- Teagasc Food Research Centre, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
| | - Paul W. O'Toole
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Jeremiah J. Sheehan
- Teagasc Food Research Centre, Cork, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
- Dairy Processing Technology Centre (DPTC), Limerick, Ireland
| | - Mark A. Fenelon
- Teagasc Food Research Centre, Cork, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
- Dairy Processing Technology Centre (DPTC), Limerick, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
| |
Collapse
|
2
|
Mkadem W, Indio V, Belguith K, Oussaief O, Savini F, Giacometti F, El Hatmi H, Serraino A, De Cesare A, Boudhrioua N. Influence of Fermentation Container Type on Chemical and Microbiological Parameters of Spontaneously Fermented Cow and Goat Milk. Foods 2023; 12:foods12091836. [PMID: 37174374 PMCID: PMC10177932 DOI: 10.3390/foods12091836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Fermented goat milk is an artisanal beverage with excellent nutritional properties. There are limited data on its physicochemical properties, fatty acids, phenolic acids, and on any insight on microbiota. The aim of this research was to conduct a pilot study to compare these parameters in raw cow and goat milk before and after spontaneous fermentation in a clay pot and glass container at 37 °C for 24 h. Both types of milk and fermentation containers significantly affected the pH, acidity, proximate composition, viscosity, and whiteness index of fermented milks. A total of 17 fatty acids were identified in fermented milks, where palmitic, stearic, and myristic were the main saturated acids, and oleic and linoleic acids were the main unsaturated ones. These profiles were primarily influenced by the type of raw milk used. Three to five phenolic acids were identified in fermented milks, where quinic acid was the major phenolic compound, and salviolinic acid was identified only in raw goat milk. Preliminary metataxonomic sequencing analysis showed that the genera Escherichia spp. and Streptococcus spp. were part of the microbiota of both fermented milks, with the first genus being the most abundant in fermented goat milk, and Streptococcus in cow's milk. Moreover, Escherichia abundance was negatively correlated with the abundance of many genera, including Lactobacillus. Overall, the results of this pilot study showed significant variations between the physicochemical properties, the fatty and phenolic acids, and the microbial communities of goat and cow fermented milk, showing the opportunity to further investigate the tested parameters in fermented goat milk to promote its production.
Collapse
Affiliation(s)
- Wafa Mkadem
- Laboratory of Physiopathology, Alimentation and Biomolecules (LR17ES03), Higher Institute of Biotechnology Sidi Thabet, University of Manouba, BP-66, Ariana 2020, Tunisia
| | - Valentina Indio
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy
| | - Khaoula Belguith
- Laboratory of Physiopathology, Alimentation and Biomolecules (LR17ES03), Higher Institute of Biotechnology Sidi Thabet, University of Manouba, BP-66, Ariana 2020, Tunisia
| | - Olfa Oussaief
- Livestock and Wildlife Laboratory, Arid Lands Institute of Medenine, University of Gabes, Medenine 4119, Tunisia
| | - Federica Savini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy
| | - Halima El Hatmi
- Livestock and Wildlife Laboratory, Arid Lands Institute of Medenine, University of Gabes, Medenine 4119, Tunisia
- Food Department, Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine 4119, Tunisia
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy
| | - Alessandra De Cesare
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy
| | - Nourhene Boudhrioua
- Laboratory of Physiopathology, Alimentation and Biomolecules (LR17ES03), Higher Institute of Biotechnology Sidi Thabet, University of Manouba, BP-66, Ariana 2020, Tunisia
| |
Collapse
|
3
|
Reuben RC, Langer D, Eisenhauer N, Jurburg SD. Universal drivers of cheese microbiomes. iScience 2023; 26:105744. [PMID: 36582819 PMCID: PMC9792889 DOI: 10.1016/j.isci.2022.105744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
The culinary value, quality, and safety of cheese are largely driven by the resident bacteria, but comparative analyses of the cheese microbiota across cheese types are scarce. We present the first global synthesis of cheese microbiomes. Following a systematic literature review of cheese microbiology research, we collected 16S rRNA gene amplicon sequence data from 824 cheese samples spanning 58 cheese types and 16 countries. We found a consistent, positive relationship between microbiome richness and pH, and a higher microbial richness in cheeses derived from goat milk. In contrast, we found no relationship between pasteurization, geographic location, or salinity and richness. Milk and cheese type, geographic location, and pasteurization collectively explained 65% of the variation in microbial community composition. Importantly, we identified four universal cheese microbiome types, driven by distinct dominant taxa. Our study reveals notable diversity patterns among the cheese microbiota, which are driven by geography and local environmental variables.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, 04103 Leipzig, Germany
| | - Désirée Langer
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Nico Eisenhauer
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, 04103 Leipzig, Germany
| | - Stephanie D. Jurburg
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
4
|
Ouamba AJK, Gagnon M, LaPointe G, Chouinard PY, Roy D. Graduate Student Literature Review: Farm management practices: Potential microbial sources that determine the microbiota of raw bovine milk. J Dairy Sci 2022; 105:7276-7287. [PMID: 35863929 DOI: 10.3168/jds.2021-21758] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/25/2022] [Indexed: 11/19/2022]
Abstract
Environmental and herd-associated factors such as geographical location, climatic conditions, forage types, bedding, soil, animal genetics, herd size, housing, lactation stage, and udder health are exploited by farmers to dictate specific management strategies that ensure dairy operation profitability and enhance the sustainability of milk production. Along with milking routines, milking systems, and storage conditions, these farming practices greatly influence the microbiota of raw milk, as evidenced by several recent studies. During the past few years, the increased interest in high-throughput sequencing technologies combined with culture-dependent methods to investigate dairy microbial ecology has improved our understanding of raw milk community dynamics throughout storage and processing. However, knowledge is still lacking on the niche-specific communities in the farm environment, and on the factors that determine bacteria transfer to the raw milk. This review summarizes findings from the past 2 decades regarding the effects of farm management practices on the diversity of bacterial species that determine the microbiological quality of raw cow milk.
Collapse
Affiliation(s)
- Alexandre J K Ouamba
- Département des Sciences des Aliments, Laboratoire de Génomique Microbienne, Université Laval, Québec, G1V 0A6, Canada; Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, J2S 2M2, Canada.
| | - Mérilie Gagnon
- Département des Sciences des Aliments, Laboratoire de Génomique Microbienne, Université Laval, Québec, G1V 0A6, Canada; Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, J2S 2M2, Canada
| | - Gisèle LaPointe
- Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, J2S 2M2, Canada; Department of Food Science, University of Guelph, Guelph, N1G 2W1, Canada
| | - P Yvan Chouinard
- Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, J2S 2M2, Canada; Département des Sciences Animales, Université Laval, Québec, G1V 0A6, Canada
| | - Denis Roy
- Département des Sciences des Aliments, Laboratoire de Génomique Microbienne, Université Laval, Québec, G1V 0A6, Canada; Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, J2S 2M2, Canada
| |
Collapse
|
5
|
Use of Autochthonous Lactic Acid Bacteria as Starter Culture of Pasteurized Milk Adobera Cheese. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adobera, a genuine, brick-shaped, lightly ripened, unstretched pasta filata-like cheese from Western México, is one of the most important market-share wise but is usually made with raw milk and prepared following artisanal procedures. A pasteurized milk cheese is needed to assess its safety and guarantee standardized quality features. However, no commercial Adobera cheese culture is available, as specific lactic acid bacteria relevant for its production have not been thoroughly identified. This study is aimed at comparing the technological and quality features of Adobera cheeses made with pasteurized milk inoculated with a mixture of autochthonous lactic acid bacteria (Lactobacillus and Leuconostoc strains) to those of traditional raw milk cheeses, hypothesizing that no significant differences would be found between them. Milk pasteurization promoted water retention into the cheese matrix, impacting its texture and color profiles. Raw milk cheeses were harder, more cohesive, and less elastic than pasteurized milk cheeses. Ripening markers were significantly higher in raw milk cheeses at all sampling times, although its evolution over time showed that the starter culture could exhibit similar proteolytic activity than that of native milk microbiota under favorable ripening conditions. The principal component analysis revealed apparent overall differences between raw Adobera cheeses and those made with pasteurized cheese milk.
Collapse
|
6
|
Characterization of Microbial Shifts during the Production and Ripening of Raw Ewe Milk-Derived Idiazabal Cheese by High-Throughput Sequencing. BIOLOGY 2022; 11:biology11050769. [PMID: 35625497 PMCID: PMC9138791 DOI: 10.3390/biology11050769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Idiazabal is a traditional cheese produced from raw ewe milk in the Basque Country (Southwestern Europe). The sensory properties of raw milk cheeses have been attributed, among other factors, to microbial shifts that occur during the production and ripening processes. In this study, we used high-throughput sequencing technologies to investigate the microbiota of Latxa ewe raw milk and the dynamics during cheese production and ripening processes. The microbiota of raw milk was composed of lactic acid bacteria (LAB), environmental bacteria and non-desirable bacteria. Throughout the cheese making and ripening processes, the growth of LAB was promoted, whereas that of non-desirable and environmental bacteria was inhibited. Moreover, some genera not reported previously in raw ewe milk were detected and clear differences were observed in the bacterial composition of raw milk and cheese among producers, in relation to LAB and environmental or non-desirable bacteria, some of which could be attributed to the production of flavour related compounds. Abstract In this study, we used high-throughput sequencing technologies (sequencing of V3–V4 hypervariable regions of 16S rRNA gene) to investigate for the first time the microbiota of Latxa ewe raw milk and the bacterial shifts that occur during the production and ripening of Idiazabal cheese. Results revealed several bacterial genera not reported previously in raw ewe milk and cheese, such as Buttiauxella and Obesumbacterium. Both the cheese making and ripening processes had a significant impact on bacterial communities. Overall, the growth of lactic acid bacteria (LAB) (Lactococcus, Lactobacillus, Leuconostoc, Enterococcus, Streptococcus and Carnobacterium) was promoted, whereas that of non-desirable and environmental bacteria was inhibited (such as Pseudomonas and Clostridium). However, considerable differences were observed among producers. It is noteworthy that the starter LAB (Lactococcus) predominated up to 30 or 60 days of ripening and then, the growth of non-starter LAB (Lactobacillus, Leuconostoc, Enterococcus and Streptococcus) was promoted. Moreover, in some cases, bacteria related to the production of volatile compounds (such as Hafnia, Brevibacterium and Psychrobacter) also showed notable abundance during the first few weeks of ripening. Overall, the results of this study enhance our understanding of microbial shifts that occur during the production and ripening of a raw ewe milk-derived cheese (Idiazabal), and could indicate that the practices adopted by producers have a great impact on the microbiota and final quality of this cheese.
Collapse
|
7
|
Rai R, Tamang JP. In vitro and genetic screening of probiotic properties of lactic acid bacteria isolated from naturally fermented cow-milk and yak-milk products of Sikkim, India. World J Microbiol Biotechnol 2022; 38:25. [PMID: 34989904 DOI: 10.1007/s11274-021-03215-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022]
Abstract
A total of 272 isolates of lactic acid bacteria (LAB) were isolated from 22 samples of naturally fermented milk products of Sikkim in India viz. dahi, soft-variety chhurpi, hard-variety chhurpi, mohi and philu, out of which, 68 LAB isolates were randomly grouped on the basis of phenotypic characteristics, and were identified by 16S rRNA gene sequence analysis. Leuconostoc mesenteroides was the most dominant genus, followed by Leuc. mesenteroides subsp. jonggajibkimchii, Lactococcus lactis subsp. cremoris, Lc. lactis, Lc. lactis subsp. hordniae, Lc. lactis subsp. tructae, Enterococcus faecalis, E. italicus and E. pseudoavium. LAB strains were tested for probiotics attributes by in vitro and genetic screening, based on marker genes. LAB strains showed tolerance to pH 3.0, bile salt, resistance to lysozyme and β-galactosidase activity. Enterococcus faecalis YS4-11 and YS4-14 and Lactococcus lactis subsp. cremoris SC3 showed more than 85% of hydrophobicity. Genes clp L and tdc encoding for low pH tolerance, agu A and Ir1516 encoding for bile tolerance, LBA1446 gene encoding for BSH activity, map A, apf, mub 1 and msa encoding for mucosal binding property were detected. Gene mesY for bacteriocin production was detected only in Leuconostoc spp. Based on the in vitro and genetic screening of probiotic attributes, Leuc. mesenteroides; Leuc. mesenteroides subsp. jonggajibkimchii and Lc. lactis subsp. cremoris were tentatively selected for possible probiotic candidates.
Collapse
Affiliation(s)
- Ranjita Rai
- Department of Microbiology, School of Life Sciences, DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Jyoti Prakash Tamang
- Department of Microbiology, School of Life Sciences, DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Sikkim University, Gangtok, 737102, Sikkim, India.
| |
Collapse
|