1
|
Ortiz-Severín J, Hojas I, Redin F, Serón E, Santana J, Maass A, Cambiazo V. From Metagenomes to Functional Expression of Resistance: floR Gene Diversity in Bacteria from Salmon Farms. Antibiotics (Basel) 2025; 14:122. [PMID: 40001366 PMCID: PMC11851438 DOI: 10.3390/antibiotics14020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Background. The increase in antibiotic resistance in human-impacted environments, such as coastal waters with aquaculture activity, is related to the widespread use of antibiotics, even at sub-lethal concentrations. In Chile, the world's second largest producer of salmon, aquaculture is considered the main source of antibiotics in coastal waters. In this work, we aimed to characterize the genetic and phenotypic profiles of antibiotic resistance in bacterial communities from salmon farms. Methods. Bacterial metagenomes from an intensive aquaculture zone in southern Chile were sequenced, and the composition, abundance and sequence of antibiotic resistance genes (ARGs) were analyzed using assembled and raw read data. Total DNA from bacterial communities was used as a template to recover floR gene variants, which were tested by heterologous expression and functional characterization of phenicol resistance. Results. Prediction of ARGs in salmon farm metagenomes using more permissive parameters yielded significantly more results than the default Resistance Gene Identifier (RGI) software. ARGs grouped into drug classes showed similar abundance profiles to global ocean bacteria. The floR gene was the most abundant phenicol-resistance gene with the lowest gene counts, showing a conserved sequence although with variations from the reference floR. These differences were recovered by RGI prediction and, in greater depth, by mapping reads to the floR sequence using SNP base-calling. These variants were analyzed by heterologous expression, revealing the co-existence of high- and low-resistance sequences in the environmental bacteria. Conclusions. This study highlights the importance of combining metagenomic and phenotypic approaches to study the genetic variability in and evolution of antibiotic-resistant bacteria associated with salmon farms.
Collapse
Affiliation(s)
- Javiera Ortiz-Severín
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago 7830490, Chile; (F.R.); (V.C.)
| | - Iñaki Hojas
- Centro de Modelamiento Matemático, Universidad de Chile and UMI-CNRS 2807, Santiago 8370415, Chile; (I.H.); (A.M.)
- Millennium Institute Center for Genome Regulation, Santiago 7850000, Chile
| | - Felipe Redin
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago 7830490, Chile; (F.R.); (V.C.)
| | - Ervin Serón
- Etecma EIRL, Puerto Montt 5500001, Chile; (E.S.); (J.S.)
| | - Jorge Santana
- Etecma EIRL, Puerto Montt 5500001, Chile; (E.S.); (J.S.)
| | - Alejandro Maass
- Centro de Modelamiento Matemático, Universidad de Chile and UMI-CNRS 2807, Santiago 8370415, Chile; (I.H.); (A.M.)
- Millennium Institute Center for Genome Regulation, Santiago 7850000, Chile
- Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8370415, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago 7830490, Chile; (F.R.); (V.C.)
- Millennium Institute Center for Genome Regulation, Santiago 7850000, Chile
| |
Collapse
|
2
|
Burcham ZM. Comparative genomic analysis of an emerging Pseudomonadaceae member, Thiopseudomonas alkaliphila. Microbiol Spectr 2024; 12:e0415723. [PMID: 38934605 PMCID: PMC11302033 DOI: 10.1128/spectrum.04157-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Thiopseudomonas alkaliphila, an organism recently classified within the Pseudomonadaceae family, has been detected in diverse sources such as human tissues, animal guts, industrial fermenters, and decomposition environments, suggesting a diverse ecological role. However, a large knowledge gap exists in how T. alkaliphila functions. In this comparative genomic analysis, adaptations indicative of habitat specificity among strains and genomic similarity to known opportunistic pathogens are revealed. Genomic investigation reveals a core metabolic utilization of multiple oxidative and non-oxidative catabolic pathways, suggesting adaptability to varied environments and carbon sources. The genomic repertoire of T. alkaliphila includes secondary metabolites, such as antimicrobials and siderophores, indicative of its involvement in microbial competition and resource acquisition. Additionally, the presence of transposases, prophages, plasmids, and Clustered Regularly Interspaced Short Palindromic Repeats-Cas systems in T. alkaliphila genomes suggests mechanisms for horizontal gene transfer and defense against viral predation. This comprehensive genomic analysis expands our understanding on the ecological functions, community interactions, and potential virulence of T. alkaliphila, while emphasizing its adaptability and diverse capabilities across environmental and host-associated ecosystems.IMPORTANCEAs the microbial world continues to be explored, new organisms will emerge with beneficial and/or pathogenetic impact. Thiopseudomonas alkaliphila is a species originally isolated from clinical human tissue and fluid samples but has not been attributed to disease. Since its classification, T. alkaliphila has been found in animal guts, animal waste, decomposing remains, and biogas fermentation reactors. This is the first study to provide an in-depth view of the metabolic potential of publicly available genomes belonging to this species through a comparative genomics and draft pangenome calculation approach. It was found that T. alkaliphila is metabolically versatile and likely adapts to diverse energy sources and environments, which may make it useful for bioremediation and in industrial settings. A range of virulence factors and antibiotic resistances were also detected, suggesting T. alkaliphila may operate as an undescribed opportunistic pathogen.
Collapse
Affiliation(s)
- Zachary M. Burcham
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
3
|
Aguirre-Sánchez JR, Quiñones B, Ortiz-Muñoz JA, Prieto-Alvarado R, Vega-López IF, Martínez-Urtaza J, Lee BG, Chaidez C. Comparative Genomic Analyses of Virulence and Antimicrobial Resistance in Citrobacter werkmanii, an Emerging Opportunistic Pathogen. Microorganisms 2023; 11:2114. [PMID: 37630674 PMCID: PMC10457828 DOI: 10.3390/microorganisms11082114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Citrobacter werkmanii is an emerging and opportunistic human pathogen found in developing countries and is a causative agent of wound, urinary tract, and blood infections. The present study conducted comparative genomic analyses of a C. werkmanii strain collection from diverse geographical locations and sources to identify the relevant virulence and antimicrobial resistance genes. Pangenome analyses divided the examined C. werkmanii strains into five distinct clades; the subsequent classification identified genes with functional roles in carbohydrate and general metabolism for the core genome and genes with a role in secretion, adherence, and the mobilome for the shell and cloud genomes. A maximum-likelihood phylogenetic tree with a heatmap, showing the virulence and antimicrobial genes' presence or absence, demonstrated the presence of genes with functional roles in secretion systems, adherence, enterobactin, and siderophore among the strains belonging to the different clades. C. werkmanii strains in clade V, predominantly from clinical sources, harbored genes implicated in type II and type Vb secretion systems as well as multidrug resistance to aminoglycoside, beta-lactamase, fluoroquinolone, phenicol, trimethoprim, macrolides, sulfonamide, and tetracycline. In summary, these comparative genomic analyses have demonstrated highly pathogenic and multidrug-resistant genetic profiles in C. werkmanii strains, indicating a virulence potential for this commensal and opportunistic human pathogen.
Collapse
Affiliation(s)
- José R. Aguirre-Sánchez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Culiacan 80110, Mexico;
| | - Beatriz Quiñones
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA; (B.Q.); (B.G.L.)
| | - José A. Ortiz-Muñoz
- Parque de Innovación Tecnológica de la Universidad Autónoma de Sinaloa, Culiacan 80040, Mexico; (J.A.O.-M.); (R.P.-A.); (I.F.V.-L.)
| | - Rogelio Prieto-Alvarado
- Parque de Innovación Tecnológica de la Universidad Autónoma de Sinaloa, Culiacan 80040, Mexico; (J.A.O.-M.); (R.P.-A.); (I.F.V.-L.)
| | - Inés F. Vega-López
- Parque de Innovación Tecnológica de la Universidad Autónoma de Sinaloa, Culiacan 80040, Mexico; (J.A.O.-M.); (R.P.-A.); (I.F.V.-L.)
| | - Jaime Martínez-Urtaza
- Departament de Genètica i de Microbiologia, Universitat Autờnoma de Barcelona, 08193 Bellaterra, Spain;
| | - Bertram G. Lee
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA; (B.Q.); (B.G.L.)
| | - Cristóbal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Culiacan 80110, Mexico;
| |
Collapse
|
4
|
Chen Q, Wei T, Yang B, Li S, Ge L, Zhou A, Xie S. The impact of deleting the mitfa gene in zebrafish on the intestinal microbiota community. Gene 2022; 846:146870. [PMID: 36075325 DOI: 10.1016/j.gene.2022.146870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 11/04/2022]
Abstract
To explore the relationship between the mitfa gene and intestinal microbiota, the 16S rRNA gene amplicon sequencing was performed to compare the intestinal microbiota composition of the mitfa knockout zebrafish line (CKO group) and the wild-type zebrafish (WT group) in this study. The results showed that the Fusobacteria and Firmicutes were significantly decreased and the Dependentiae and Patescibacteria were significantly increased in the CKO group at the phylum level. Furthermore, the relative abundance of Citrobacter, Gordonia, Mesorhizobium, Legionella, and Bradyrhizobium were extremely higher in the CKO group, whereas the other four genera Nocardia, Pannonibacter, Shinella, and Cetobacterium were significantly declined in the CKO group at the genus level. Due to these changed intestinal microbiota appear to be related to lipid metabolism and immunity, eight lipid metabolism-related genes and nine inflammation-related genes were detected in the intestinal. The results showed that the expression levels of these genes were significant differences between the CKO and WT group. These results indicated that the deletion of mitfa can affect the expression levels of immune and metabolism-related genes, and causing changes in the composition of the intestinal microbiota.
Collapse
Affiliation(s)
- Qingshi Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Tianli Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Bing Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Siying Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Liangjun Ge
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Aiguo Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China.
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Al-Eqabi SRS, Al-Abedi GJK. Pathological, Immunological, and Hematological Parameters Associated with Experimental Infection of Citrobacter Freundii in Rabbits. ARCHIVES OF RAZI INSTITUTE 2021; 76:1607-1615. [PMID: 35546976 PMCID: PMC9083873 DOI: 10.22092/ari.2021.356801.1911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/04/2021] [Indexed: 06/15/2023]
Abstract
Citrobacter freundii is one of the most important nosocomial opportunistic pathogens, which causes sepsis, as well as different gross and histopathological lesions in various internal organs in humans and animals, especially dogs and fish. This study aimed to investigate the hematological parameters, immunological responses, and pathological effects of the infection induced by the virulent strain of C. freundii on rabbits. A total of 42 rabbits (local breed; male and female), with a mean weight of 1.5-2 kg, were housed under controlled environmental conditions (20±2°C, 14:10 h light: dark cycle) and allowed ad libitum access to food and water. After two weeks of adaption, the rabbits were divided randomly into three groups of 14 animals per group. Group one (G1) received 3×108 CFU/ml of the virulent isolate (intraperitoneally [IP]) of C. freundii. Group two (G2) was injected subcutaneously (SC) with 3×108 CFU/ml of the virulent strain of C. freundii, while group three was IP injected with phosphate buffer saline and considered a negative control group. Results showed the variable gross pathological effects which included hemorrhage, edema, and congestion of visceral organs. Furthermore, the microscopic lesions showed pneumonia due to inflammatory cells infiltration, mainly neutrophils, macrophages, plasmacytes, and lymphocytes, severe interstitial and intra-alveolar edema, extensive pulmonary hemorrhage, emphysema, and atelectasis. The recorded data from the liver samples revealed hepatitis which was characterized by perivascular and periportal leukocyte cuffing, marked centrilobular with periportal necrosis, extensive hepatic edema, and periportal edema in addition to extensive fibrosis in interlobular septa and periportal fibrosis with severe interstitial hemorrhage. In the kidneys, there were severe renal edema, mixed inflammatory exudation, mainly neutrophils, macrophages, plasmacytes, lymphocytes, fibroblast infiltration in renal parenchyma and renal cortex, extensive renal hemorrhage, edema, as well as fibrosis and severe renal tubular necrosis. In addition, enteritis appeared in the intestine with mucosal edema, especially in lamina propria; moreover, necrosis of entire villi, epithelial necrosis, mucosal and submucosal hemorrhage, and fibrosis were observed. The present study revealed a significant increase in total leukocytes count and the concentration of TNF-α in the infected groups. To the best of the authors' knowledge, this study is considered the first attempt aimed to detect the pathological effects of C. freundii on visceral organs in rabbits. It is concluded that this bacterium could induce a significant pathological, hematological, and immunological changes in the infected animals.
Collapse
Affiliation(s)
- S R S Al-Eqabi
- Department of Public health, College of Veterinary Medicine, Wasit University, Wasit, Iraq
| | - G J K Al-Abedi
- Department of Microbiology, College of Veterinary Medicine, Wasit University, Wasit, Iraq
| |
Collapse
|