1
|
Gundogdu K, Orus Iturriza A, Orruño M, Montánchez I, Eguiraun H, Martinez I, Arana I, Kaberdin VR. Addressing the Joint Impact of Temperature and pH on Vibrio harveyi Adaptation in the Time of Climate Change. Microorganisms 2023; 11:microorganisms11041075. [PMID: 37110498 PMCID: PMC10142252 DOI: 10.3390/microorganisms11041075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Global warming and acidification of the global ocean are two important manifestations of the ongoing climate change. To characterize their joint impact on Vibrio adaptation and fitness, we analyzed the temperature-dependent adaptation of Vibrio harveyi at different pHs (7.0, 7.5, 8.0, 8.3 and 8.5) that mimic the pH of the world ocean in the past, present and future. Comparison of V. harveyi growth at 20, 25 and 30 °C show that higher temperature per se facilitates the logarithmic growth of V. harveyi in nutrient-rich environments in a pH-dependent manner. Further survival tests carried out in artificial seawater for 35 days revealed that cell culturability declined significantly upon incubation at 25 °C and 30 °C but not at 20 °C. Moreover, although acidification displayed a negative impact on cell culturability at 25 °C, it appeared to play a minor role at 30 °C, suggesting that elevated temperature, rather than pH, was the key player in the observed reduction of cell culturability. In addition, analyses of the stressed cell morphology and size distribution by epifluorescent microscopy indicates that V. harveyi likely exploits different adaptation strategies (e.g., acquisition of coccoid-like morphology) whose roles might differ depending on the temperature-pH combination.
Collapse
Affiliation(s)
- Kaan Gundogdu
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Ander Orus Iturriza
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Maite Orruño
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
| | - Itxaso Montánchez
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Harkaitz Eguiraun
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
- Department of Graphic Design & Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country UPV/EHU, 48013 Bilbao, Spain
| | - Iciar Martinez
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Inés Arana
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
2
|
Wagley S. The Viable but Non-Culturable (VBNC) State in Vibrio Species: Why Studying the VBNC State Now Is More Exciting than Ever. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:253-268. [PMID: 36792880 DOI: 10.1007/978-3-031-22997-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
During periods that are not conducive for growth or when facing stressful conditions, Vibrios enter a dormant state called the Viable But Non-Culturable (VBNC) state. In this chapter, I will analyse the role of the VBNC state in Vibrio species survival and pathogenesis and the molecular mechanisms regulating this complex phenomenon. I will emphasise some of the novel findings that make studying the VBNC state now more exciting than ever and its significance in the epidemiology of these pathogens and critical role in food safety.
Collapse
Affiliation(s)
- Sariqa Wagley
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, UK.
| |
Collapse
|
3
|
Recent Insights into Escherichia coli and Vibrio spp. Pathogenicity and Responses to Stress. Microorganisms 2021; 10:microorganisms10010038. [PMID: 35056488 PMCID: PMC8779644 DOI: 10.3390/microorganisms10010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
The ubiquitous presence of microorganisms is largely attributed to their tremendous capacity to successfully adapt and survive in highly adverse environments [...].
Collapse
|