1
|
Ma Z, Wei L, Wang Z, Liu Y, Li N, Jiao J, Zuo Y, Xia X, Cai X, Meng Q, Qiao J. sRNA STnc3020 contributes to the virulence of Salmonella typhimurium may via modulating the gene expression of prgJ of T3SS needle complex. Int J Biol Macromol 2025; 292:139065. [PMID: 39725119 DOI: 10.1016/j.ijbiomac.2024.139065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
As important post-transcriptional regulators of gene expression, sRNAs play important modulatory roles in the environmental adaptation and virulence of bacteria. To investigate the regulatory role of sRNA STnc3020 in the virulence of Salmonella typhimurium (S. typhimurium). This study analyzed the impacts of STnc3020 deletion on adherence, invasion, intracellular survival, macrophage apoptosis, and pathogenicity of S. typhimurium in mice. Furthermore, potential regulatory target genes of STnc3020 were identified and its regulatory mechanism was validated. The results showed that at the cellular level, the deletion of STnc3020 significantly reduced the adhesion ability of S. typhimurium to intestinal epithelial cells (P < 0.01), as well as its proliferation and apoptosis-inducing abilities within macrophages (P < 0.01). Meanwhile, animal experiment results indicated that the deletion of STnc3020 significantly reduced the colonization rate of S. typhimurium in the liver and cecum of mice (P < 0.01), and increased the median lethal dose (4.28 × 105) in mice. Regulatory mechanism research results showed that STnc3020 can interact with the target gene prgJ of the Type III secretion system (T3SS), and the protein level of PrgJ significantly decreased after the deletion of STnc3020 (P < 0.01). These findings offer new insights into sRNA-mediated virulence control and may aid in developing new vaccines and drugs for S. typhimurium.
Collapse
Affiliation(s)
- Zhongmei Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lixiang Wei
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhanpeng Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yucheng Liu
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang 832000, China
| | - Nengxiu Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Jiao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yufei Zuo
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xianzhu Xia
- State Key Lab of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Xuepeng Cai
- State Key Lab of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Qingling Meng
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
2
|
Yakkala HN, Madikonda AK, Behera SR, Pillalamarri V, Mohammad KG, Dhurve G, Tammineni P, Pakala SB, Siddavattam D. A leucine responsive small RNA AbcR200 regulates expression of the lactate utilization (lut) operon in Acinetobacter baumannii DS002. J Biol Chem 2025; 301:108160. [PMID: 39800307 PMCID: PMC11869524 DOI: 10.1016/j.jbc.2025.108160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 02/13/2025] Open
Abstract
Noncoding small RNAs are essential for modulating bacterial gene expression, especially under carbon and nutrient-limited conditions. In this study, by using both in silico and molecular hybridization tools, we identified a carbon source responsive small RNA in Acinetobacter baumannii DS002. Expression of corresponding gene, abcR200, located at the intergenic region of omt (O-methyl transferase) and orf72 genes, is under the transcriptional control of a global transcriptional factor, leucine responsive regulatory protein (Lrp). A sequence motif that serves as a target for Lrp was found overlapping the abcR200 promoter (PabcR200). Chromatin immunoprecipitation demonstrated that Lrp oligomers, formed under low leucine conditions, strongly interacted to the PabcR200. However, the observed interactions were disrupted in the presence of leucine, as leucine promoted dissociation of Lrp to monomers and dimers, the conformation unfavorable to interact with PabcR200. The abcR200 promoter activity increased with increase of exogenous leucine concentrations, and at 2 mM leucine concentration, maximum promoter activity was observed. The AbcR200 target mRNAs were identified by analyzing the transcriptome of abcR200 negative strain of A. baumannii. Intriguingly, in abcR200 negative background, expression of lut (lactate utilization) mRNA has increased, suggesting lut mRNA as one of the mRNA targets for AbcR200. Consistent of this observation, there existed extensive sequence complementarity between AbcR200 and lut mRNA, especially in the regions coding LutP, LutE, and LutR. In support of the observed sequence complementarity, the levels of lut mRNA encoded proteins got elevated in abcR200 negative HS002 strains suggesting a role for AbcR200 in translational inhibition of lut mRNA.
Collapse
Affiliation(s)
- Harshita Nagasai Yakkala
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Ashok Kumar Madikonda
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sandhya Rani Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Vijaykumar Pillalamarri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Kashif Gulam Mohammad
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Ganeshwari Dhurve
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Prasad Tammineni
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Suresh Babu Pakala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Dayananda Siddavattam
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
3
|
Khaledi M, Khatami M, Hemmati J, Bakhti S, Hoseini SA, Ghahramanpour H. Role of Small Non-Coding RNA in Gram-Negative Bacteria: New Insights and Comprehensive Review of Mechanisms, Functions, and Potential Applications. Mol Biotechnol 2024:10.1007/s12033-024-01248-w. [PMID: 39153013 DOI: 10.1007/s12033-024-01248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
Small non-coding RNAs (sRNAs) are a key part of gene expression regulation in bacteria. Many physiologic activities like adaptation to environmental stresses, antibiotic resistance, quorum sensing, and modulation of the host immune response are regulated directly or indirectly by sRNAs in Gram-negative bacteria. Therefore, sRNAs can be considered as potentially useful therapeutic options. They have opened promising perspectives in the field of diagnosis of pathogens and treatment of infections caused by antibiotic-resistant organisms. Identification of sRNAs can be executed by sequence and expression-based methods. Despite the valuable progress in the last two decades, and discovery of new sRNAs, their exact role in biological pathways especially in co-operation with other biomolecules involved in gene expression regulation such as RNA-binding proteins (RBPs), riboswitches, and other sRNAs needs further investigation. Although the numerous RNA databases are available, including 59 databases used by RNAcentral, there remains a significant gap in the absence of a comprehensive and professional database that categorizes experimentally validated sRNAs in Gram-negative pathogens. Here, we review the present knowledge about most recent and important sRNAs and their regulatory mechanism, strengths and weaknesses of current methods of sRNAs identification. Also, we try to demonstrate the potential applications and new insights of sRNAs for future studies.
Collapse
Affiliation(s)
- Mansoor Khaledi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jaber Hemmati
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahriar Bakhti
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | | - Hossein Ghahramanpour
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Inostroza O, Fuentes JA, Yáñez P, Espinoza G, Fica O, Queraltó C, Rodríguez J, Flores I, González R, Soto JA, Calderón IL, Gil F. Characterization of Clostridioides difficile Persister Cells and Their Role in Antibiotic Tolerance. Microorganisms 2024; 12:1394. [PMID: 39065162 PMCID: PMC11279270 DOI: 10.3390/microorganisms12071394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Clostridioides difficile is a Gram-positive pathogen known for its toxin production and spore formation. It is primarily responsible for most cases of antibiotic-associated diarrhea. Bacterial persisters are a small subset of the population that exhibits transient tolerance to bactericidal substances, and they are of significant medical concern due to their association with the emergence of antibiotic resistance and difficult-to-treat chronic or recurrent infections. Vancomycin, the predominant antibiotic utilized in the management of C. difficile infection, is extensively applied in the realm of clinical practice. Previous studies have demonstrated a persister-like phenotype with treatments involving this antibiotic. However, the mechanism in C. difficile remains largely unknown, primarily due to the challenge of isolating this small population at any given time. To better characterize C. difficile persister cells, we present a study that enables the enrichment and characterization of persister cells from bacterial cultures in both the exponential and stationary phases. Moreover, we could differentiate between triggered (induced using antibiotics such as vancomycin) and spontaneous (stochastic) persister cells. Additionally, we observed the involvement of toxin-antitoxin systems and Clp proteases in persister cell formation.
Collapse
Affiliation(s)
- Osvaldo Inostroza
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (O.I.); (P.Y.); (G.E.); (O.F.); camilabelen.-@hotmail.com (C.Q.); (J.R.); (I.F.); (R.G.)
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile;
| | - Paulina Yáñez
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (O.I.); (P.Y.); (G.E.); (O.F.); camilabelen.-@hotmail.com (C.Q.); (J.R.); (I.F.); (R.G.)
| | - Giovanni Espinoza
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (O.I.); (P.Y.); (G.E.); (O.F.); camilabelen.-@hotmail.com (C.Q.); (J.R.); (I.F.); (R.G.)
| | - Omar Fica
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (O.I.); (P.Y.); (G.E.); (O.F.); camilabelen.-@hotmail.com (C.Q.); (J.R.); (I.F.); (R.G.)
| | - Camila Queraltó
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (O.I.); (P.Y.); (G.E.); (O.F.); camilabelen.-@hotmail.com (C.Q.); (J.R.); (I.F.); (R.G.)
| | - José Rodríguez
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (O.I.); (P.Y.); (G.E.); (O.F.); camilabelen.-@hotmail.com (C.Q.); (J.R.); (I.F.); (R.G.)
| | - Isidora Flores
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (O.I.); (P.Y.); (G.E.); (O.F.); camilabelen.-@hotmail.com (C.Q.); (J.R.); (I.F.); (R.G.)
| | - Ruth González
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (O.I.); (P.Y.); (G.E.); (O.F.); camilabelen.-@hotmail.com (C.Q.); (J.R.); (I.F.); (R.G.)
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile;
| | - Iván L. Calderón
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (O.I.); (P.Y.); (G.E.); (O.F.); camilabelen.-@hotmail.com (C.Q.); (J.R.); (I.F.); (R.G.)
- ANID-Millennium Science Initiative Program-Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago 8370186, Chile
| |
Collapse
|
5
|
Du Y, Wang Y, Geng J, Long J, Yang H, Duan G, Chen S. Molecular mechanism of Hfq-dependent sRNA1039 and sRNA1600 regulating antibiotic resistance and virulence in Shigella sonnei. Int J Antimicrob Agents 2024; 63:107070. [PMID: 38141834 DOI: 10.1016/j.ijantimicag.2023.107070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Bacillary dysentery caused by Shigella spp. is a significant concern for human health. Small non-coding RNA (sRNA) plays a crucial role in regulating antibiotic resistance and virulence in Shigella spp. However, the specific mechanisms behind this phenomenon are still not fully understood. This study discovered two sRNAs (sRNA1039 and sRNA1600) that may be involved in bacterial resistance and virulence. By constructing deletion mutants (WT/ΔSR1039 and WT/ΔSR1600), this study found that the WT/ΔSR1039 mutants caused a two-fold increase in sensitivity to ampicillin, gentamicin and cefuroxime, and the WT/ΔSR1600 mutants caused a two-fold increase in sensitivity to cefuroxime. Furthermore, the WT/ΔSR1600 mutants caused a decrease in the adhesion and invasion of bacteria to HeLa cells (P<0.01), and changed the oxidative stress level of bacteria to reduce their survival rate (P<0.001). Subsequently, this study explored the molecular mechanisms by which sRNA1039 and sRNA1600 regulate antibiotic resistance and virulence. The deletion of sRNA1039 accelerated the degradation of target gene cfa mRNA and reduced its expression, thereby regulating the expression of pore protein gene ompD indirectly and negatively to increase bacterial sensitivity to ampicillin, gentamicin and cefuroxime. The inactivation of sRNA1600 reduced the formation of persister cells to reduce resistance to cefuroxime, and reduced the expression of type-III-secretion-system-related genes to reduce bacterial virulence by reducing the expression of target gene tomB. These results provide new insights into Hfq-sRNA-mRNA regulation of the resistance and virulence network of Shigella sonnei, which could potentially promote the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Yazhe Du
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ya Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Juan Geng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinzhao Long
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Abstract
Small regulatory RNA (sRNAs) are key mediators of posttranscriptional gene control in bacteria. Assisted by RNA-binding proteins, a single sRNA often modulates the expression of dozens of genes, and thus sRNAs frequently adopt central roles in regulatory networks. Posttranscriptional regulation by sRNAs comes with several unique features that cannot be achieved by transcriptional regulators. However, for optimal network performance, transcriptional and posttranscriptional control mechanisms typically go hand-in-hand. This view is reflected by the ever-growing class of mixed network motifs involving sRNAs and transcription factors, which are ubiquitous in biology and whose regulatory properties we are beginning to understand. In addition, sRNA activity can be antagonized by base-pairing with sponge RNAs, adding yet another layer of complexity to these networks. In this article, we summarize the regulatory concepts underlying sRNA-mediated gene control in bacteria and discuss how sRNAs shape the output of a network, focusing on several key examples.
Collapse
Affiliation(s)
- Kai Papenfort
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany;
- Microverse Cluster, Friedrich Schiller University Jena, Jena, Germany
| | - Sahar Melamed
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
7
|
A Small RNA, SaaS, Promotes Salmonella Pathogenicity by Regulating Invasion, Intracellular Growth, and Virulence Factors. Microbiol Spectr 2023; 11:e0293822. [PMID: 36688642 PMCID: PMC9927236 DOI: 10.1128/spectrum.02938-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Salmonella enterica serovar Enteritidis is a common foodborne pathogen that infects both humans and animals. The S. Enteritidis virulence regulation network remains largely incomplete, and knowledge regarding the specific virulence phenotype of small RNAs (sRNAs) is limited. Here, we investigated the role of a previously identified sRNA, Salmonella adhesive-associated sRNA (SaaS), in the virulence phenotype of S. Enteritidis by constructing mutant (ΔsaaS) and complemented (ΔsaaS/psaaS) strains. SaaS did not affect S. Enteritidis; it was activated in the simulated intestinal environment (SIE), regulating the expression of virulence target genes. We discovered that it directly binds ssaV mRNA. Caco-2 and RAW 264.7 cell assays revealed that SaaS promoted S. Enteritidis invasion and damage to epithelial cells while suppressing macrophage overgrowth and destruction. Furthermore, a BALB/c mouse model demonstrated that the deletion of SaaS significantly reduced mortality and attenuated the deterioration of pathophysiology, bacterial dissemination into systemic circulation, and systemic inflammation. Our findings indicate that SaaS is required for S. Enteritidis virulence and further highlight its biological role in bacterial pathogenesis. IMPORTANCE Salmonella is a zoonotic pathogen with high virulence worldwide, and sRNAs have recently been discovered to play important roles. We explored the biological characteristics of the sRNA SaaS and developed two cell infection models and a mouse infection model. SaaS is an SIE-responsive sRNA that regulates the expression of virulence-targeted genes. Additionally, it differentially mediates invasion and intracellular growth for survival and infection of the epithelium and macrophages. We further found that SaaS enhanced bacterial virulence by promoting lethality, colonization, and inflammatory response. These findings provide a better understanding of the critical role of sRNA in bacterial virulence.
Collapse
|
8
|
RyhB Paralogs Downregulate the Expressions of Multiple Survival-Associated Genes and Attenuate the Survival of Salmonella Enteritidis in the Chicken Macrophage HD11. Microorganisms 2023; 11:microorganisms11010214. [PMID: 36677506 PMCID: PMC9860832 DOI: 10.3390/microorganisms11010214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
RyhB-1 and RyhB-2 are small non-coding RNAs in Salmonella that act as regulators of iron homeostasis by sensing the environmental iron concentration. Expressions of RyhB paralogs from Salmonella Typhimurium are increased within microphages. RyhB paralogs restrain the growth of S. Typhimurium in RAW264.7 macrophages by modulating the expression of Salmonella pathogenicity island 1 (SPI-1) genes sicA and rtsB. However, little is known about the regulatory role of RyhBs and their virulence-associated targets in Salmonella Enteritidis. We studied candidate targets of RyhB paralogs via RNA-Seq in conditions of iron limitation and hypoxia. RyhB paralogs were expressed when the S. Enteritidis strain CMCC(B)50336 (SE50336) interacted with the chicken macrophage line HD11. We analyzed gene expression associated with Salmonella survival and replication in macrophages in wild-type strain SE50336 and the RyhB deletion mutants after co-incubation with HD11 and screened out targets regulated by RyhBs. The expressions of both RyhB-1 and RyhB-2 were increased after co-incubation with HD11 for 8 h and several survival-associated genes within macrophages, such as ssaI, sseA, pagC, sodC, mgtC, yaeB, pocR, and hns, were upregulated in the ryhB-1 deletion mutant. Specifically, ssaI, the type-three secretion system 2 (T3SS-2) effector encoded by SPI-2, which promoted the survival of Salmonella in macrophages, was upregulated more than 3-fold in the ryhB-1 deletion mutant. We confirmed that both RyhB-1 and RyhB-2 downregulated the expression of ssaI to repress its mRNA translation by directly interacting with its coding sequence (CDS) region via an incomplete complementary base-pairing mechanism. The SPI-2 gene sseA was indirectly modulated by RyhB-1. The survival assays in macrophages showed that the ability of intracellular survival of ryhB-1 and/or ryhB-2 deletion mutants in HD11 was higher than that of the wild-type strain. These results indicate that RyhB paralogs downregulate survival-related virulence factors and attenuate the survival of S. Enteritidis inside chicken macrophage HD11.
Collapse
|
9
|
RyhB in Avian Pathogenic Escherichia coli Regulates the Expression of Virulence-Related Genes and Contributes to Meningitis Development in a Mouse Model. Int J Mol Sci 2022; 23:ijms232415532. [PMID: 36555174 PMCID: PMC9778962 DOI: 10.3390/ijms232415532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is an important member of extraintestinal pathogenic Escherichia coli (ExPEC). It shares similar pathogenic strategies with neonatal meningitis E. coli (NMEC) and may threaten human health due to its potential zoonosis. RyhB is a small non-coding RNA that regulates iron homeostasis in E. coli. However, it is unclear whether RyhB regulates meningitis occurrence. To investigate the function of RyhB in the development of meningitis, we constructed the deletion mutant APEC XM∆ryhB and the complemented mutant APEC XM∆ryhB/pryhB, established a mouse meningitis model and evaluated the role of RyhB in virulence of APEC. The results showed that the deletion of ryhB decreased biofilm formation, adhesion to the brain microvascular endothelial cell line bEnd.3 and serum resistance. RNA-seq data showed that the expression of multiple virulence-related genes changed in the ryhB deletion mutant in the presence of duck serum. Deletion of ryhB reduced the clinical symptoms of mice, such as opisthotonus, diarrhea and neurological signs, when challenged with APEC. Compared with the mice infected with the wild-type APEC, fewer histopathological lesions were observed in the brain of mice infected with the ryhB deletion mutant APEC XM∆ryhB. The bacterial loads in the tissues and the relative expression of cytokines (IL-1β, IL-6, and TNF-α) in the brain significantly decreased when challenged with the APEC XM∆ryhB. The expressions of tight junction proteins (claudin-5, occludin and ZO-1) were not reduced in the brain of mice infected with APEC XM∆ryhB; that is, the blood-brain barrier permeability of mice was not significantly damaged. In conclusion, RyhB contributes to the pathogenicity of APEC XM in the meningitis-causing process by promoting biofilm formation, adhesion to endothelial cells, serum resistance and virulence-related genes expression.
Collapse
|
10
|
Meng X, He M, Xia P, Wang J, Wang H, Zhu G. Functions of Small Non-Coding RNAs in Salmonella–Host Interactions. BIOLOGY 2022; 11:biology11091283. [PMID: 36138763 PMCID: PMC9495376 DOI: 10.3390/biology11091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary In the process of infecting the host, Salmonella senses and adapts to the environment within the host, breaks through the host’s defense system, and survives and multiplies in the host cell. As a class of universal regulators encoded in intergenic space, an increasing number of small non-coding RNAs (sRNAs) have been found to be involved in a series of processes during Salmonella infection, and they play an important role in interactions with the host cell. In this review, we discuss how sRNAs help Salmonella resist acidic environmental stress by regulating acid resistance genes and modulate adhesion and invasion to non-phagocytic cells by regulating virulent genes such as fimbrial subunits and outer membrane proteins. In addition, sRNAs help Salmonella adapt to oxidative stress within host cells and promote survival within macrophages. Although the function of a variety of sRNAs has been studied during host–Salmonella interactions, many of sRNAs’ functions remain to be discovered. Abstract Salmonella species infect hosts by entering phagocytic and non-phagocytic cells, causing diverse disease symptoms, such as fever, gastroenteritis, and even death. Therefore, Salmonella has attracted much attention. Many factors are involved in pathogenesis, for example, the capsule, enterotoxins, Salmonella pathogenicity islands (SPIs), and corresponding regulators. These factors are all traditional proteins associated with virulence and regulation. Recently, small non-coding RNAs (sRNAs) have also been reported to function as critical regulators. Salmonella has become a model organism for studying sRNAs. sRNAs regulate gene expression by imperfect base-pairing with targets at the post-transcriptional level. sRNAs are involved in diverse biological processes, such as virulence, substance metabolism, and adaptation to stress environments. Although some studies have reported the crucial roles of sRNAs in regulating host–pathogen interactions, the function of sRNAs in host–Salmonella interactions has rarely been reviewed. Here, we review the functions of sRNAs during the infection of host cells by Salmonella, aiming to deepen our understanding of sRNA functions and the pathogenic mechanism of Salmonella.
Collapse
Affiliation(s)
- Xia Meng
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
- Correspondence:
| | - Mengping He
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
| | - Pengpeng Xia
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
| | - Jinqiu Wang
- Department of Animal Husbandry and Veterinary Medicine, Beijing Agricultural Vocational College, Beijing 102442, China
| | - Heng Wang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
| |
Collapse
|
11
|
Mahendran G, Jayasinghe OT, Thavakumaran D, Arachchilage GM, Silva GN. Key players in regulatory RNA realm of bacteria. Biochem Biophys Rep 2022; 30:101276. [PMID: 35592614 PMCID: PMC9111926 DOI: 10.1016/j.bbrep.2022.101276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Precise regulation of gene expression is crucial for living cells to adapt for survival in diverse environmental conditions. Among the common cellular regulatory mechanisms, RNA-based regulators play a key role in all domains of life. Discovery of regulatory RNAs have made a paradigm shift in molecular biology as many regulatory functions of RNA have been identified beyond its canonical roles as messenger, ribosomal and transfer RNA. In the complex regulatory RNA network, riboswitches, small RNAs, and RNA thermometers can be identified as some of the key players. Herein, we review the discovery, mechanism, and potential therapeutic use of these classes of regulatory RNAs mainly found in bacteria. Being highly adaptive organisms that inhabit a broad range of ecological niches, bacteria have adopted tight and rapid-responding gene regulation mechanisms. This review aims to highlight how bacteria utilize versatile RNA structures and sequences to build a sophisticated gene regulation network. The three major classes of prokaryotic ncRNAs and their characterized mechanisms of operation in gene regulation. sRNAs emerging as major players in global gene regulatory networks. Riboswitch mediated gene control mechanisms through on/off switches in response to ligand binding. RNA thermo sensors for temperature-dependent gene expression. Therapeutic importance of ncRNAs and computational approaches involved in the discovery of ncRNAs.
Collapse
Affiliation(s)
- Gowthami Mahendran
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Chemistry and Biochemistry, University of Notre Dame, IN, 46556, USA
| | - Oshadhi T. Jayasinghe
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Dhanushika Thavakumaran
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Chemistry and Biochemistry, University of Notre Dame, IN, 46556, USA
| | - Gayan Mirihana Arachchilage
- Howard Hughes Medical Institute, Yale University, New Haven, CT, 06520-8103, USA
- PTC Therapeutics Inc, South Plainfield, NJ, 07080, USA
| | - Gayathri N. Silva
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Corresponding author.
| |
Collapse
|
12
|
Charbonnier M, González-Espinoza G, Kehl-Fie TE, Lalaouna D. Battle for Metals: Regulatory RNAs at the Front Line. Front Cell Infect Microbiol 2022; 12:952948. [PMID: 35865816 PMCID: PMC9294342 DOI: 10.3389/fcimb.2022.952948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Metal such as iron, zinc, manganese, and nickel are essential elements for bacteria. These nutrients are required in crucial structural and catalytic roles in biological processes, including precursor biosynthesis, DNA replication, transcription, respiration, and oxidative stress responses. While essential, in excess these nutrients can also be toxic. The immune system leverages both of these facets, to limit bacterial proliferation and combat invaders. Metal binding immune proteins reduce the bioavailability of metals at the infection sites starving intruders, while immune cells intoxicate pathogens by providing metals in excess leading to enzyme mismetallation and/or reactive oxygen species generation. In this dynamic metal environment, maintaining metal homeostasis is a critical process that must be precisely coordinated. To achieve this, bacteria utilize diverse metal uptake and efflux systems controlled by metalloregulatory proteins. Recently, small regulatory RNAs (sRNAs) have been revealed to be critical post-transcriptional regulators, working in conjunction with transcription factors to promote rapid adaptation and to fine-tune bacterial adaptation to metal abundance. In this mini review, we discuss the expanding role for sRNAs in iron homeostasis, but also in orchestrating adaptation to the availability of other metals like manganese and nickel. Furthermore, we describe the sRNA-mediated interdependency between metal homeostasis and oxidative stress responses, and how regulatory networks controlled by sRNAs contribute to survival and virulence.
Collapse
Affiliation(s)
- Mathilde Charbonnier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | | | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana IL, United States.,Carl R. Woese Institute for Genomic Biology University of Illinois Urbana-Champaign, Urbana IL, United States
| | - David Lalaouna
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| |
Collapse
|
13
|
Felden B, Augagneur Y. Diversity and Versatility in Small RNA-Mediated Regulation in Bacterial Pathogens. Front Microbiol 2021; 12:719977. [PMID: 34447363 PMCID: PMC8383071 DOI: 10.3389/fmicb.2021.719977] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial gene expression is under the control of a large set of molecules acting at multiple levels. In addition to the transcription factors (TFs) already known to be involved in global regulation of gene expression, small regulatory RNAs (sRNAs) are emerging as major players in gene regulatory networks, where they allow environmental adaptation and fitness. Developments in high-throughput screening have enabled their detection in the entire bacterial kingdom. These sRNAs influence a plethora of biological processes, including but not limited to outer membrane synthesis, metabolism, TF regulation, transcription termination, virulence, and antibiotic resistance and persistence. Almost always noncoding, they regulate target genes at the post-transcriptional level, usually through base-pair interactions with mRNAs, alone or with the help of dedicated chaperones. There is growing evidence that sRNA-mediated mechanisms of actions are far more diverse than initially thought, and that they go beyond the so-called cis- and trans-encoded classifications. These molecules can be derived and processed from 5' untranslated regions (UTRs), coding or non-coding sequences, and even from 3' UTRs. They usually act within the bacterial cytoplasm, but recent studies showed sRNAs in extracellular vesicles, where they influence host cell interactions. In this review, we highlight the various functions of sRNAs in bacterial pathogens, and focus on the increasing examples of widely diverse regulatory mechanisms that might compel us to reconsider what constitute the sRNA.
Collapse
Affiliation(s)
- Brice Felden
- Inserm, Bacterial Regulatory RNAs and Medicine (BRM) - UMR_S 1230, Rennes, France
| | - Yoann Augagneur
- Inserm, Bacterial Regulatory RNAs and Medicine (BRM) - UMR_S 1230, Rennes, France
| |
Collapse
|
14
|
The RNA Chaperone Hfq Participates in Persistence to Multiple Antibiotics in the Fish Pathogen Yersinia ruckeri. Microorganisms 2021; 9:microorganisms9071404. [PMID: 34209738 PMCID: PMC8308036 DOI: 10.3390/microorganisms9071404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Yersinia ruckeri causes outbreaks of enteric redmouth disease in salmon aquaculture all over the world. The transient antibiotic tolerance exhibited by bacterial persisters is commonly thought to be responsible for outbreaks; however, the molecular factors underlying this behavior have not been explored in Y. ruckeri. In this study, we investigated the participation of the RNA chaperone Hfq from Y. ruckeri in antibiotic persistence. Cultures of the hfq-knockout mutant (Δhfq) exhibited faster replication, increased ATP levels and a more reductive environment than the wild type. The growth curves of bacteria exposed to sublethal concentrations of ampicillin, oxolinic acid, ciprofloxacin and polymyxin B revealed a greater susceptibility for the Δhfq strain. The time-kill curves of bacteria treated with the antibiotics mentioned above and florfenicol, using inoculums from exponential, stationary and biofilm cultures, demonstrated that the Δhfq strain has significant defects in persister cells production. To shed more light on the role of Hfq in antibiotic persistence, we analyzed its dependence on the (p)ppGpp synthetase RelA by determining the persister cells production in the absence of the relA gene. The ΔrelA and ΔrelAΔhfq strains displayed similar defects in persister cells formation, but higher than Δhfq strain. Similarly, stationary cultures of the ΔrelA and ΔrelAΔhfq strains exhibited comparable levels of ATP but higher than that of the Δhfq strain, indicating that relA is epistatic over hfq. Taken together, our findings provide valuable information on antibiotic persistence in Y. ruckeri, shedding light on the participation of Hfq in the persistence phenomenon.
Collapse
|