1
|
Lapauw L, Rutten A, Dupont J, Amini N, Vercauteren L, Derrien M, Raes J, Gielen E. Associations between gut microbiota and sarcopenia or its defining parameters in older adults: A systematic review. J Cachexia Sarcopenia Muscle 2024; 15:2190-2207. [PMID: 39192550 PMCID: PMC11634501 DOI: 10.1002/jcsm.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Altered gut microbiota (GM) potentially contribute to development or worsening of sarcopenia through a gut-muscle axis. This systematic review aims to compare GM between persons with sarcopenia or low sarcopenia-defining parameters (muscle mass, strength, and physical performance) to those with preserved muscle status, as well as to clarify possible associations between sarcopenia (-defining parameters) and relative abundance (RA) of GM-taxa or GM-(α- or β) diversity indices, in order to clarify whether there is robust evidence of the existence of a GM signature for sarcopenia. This systematic review was conducted according to the PRISMA-reporting guideline and pre-registered on PROSPERO (CRD42021259597). PubMed, Web of Science, Embase, ClinicalTrials.gov, and Cochrane library were searched until 20 July 2023. Included studies reported on GM and sarcopenia or its defining parameters. Observational studies were included with populations of mean age ≥50 years. Thirty-two studies totalling 10 781 persons (58.56% ♀) were included. Thirteen studies defined sarcopenia as a construct. Nineteen studies reported at least one sarcopenia-defining parameter (muscle mass, strength or physical performance). Studies found different GM-taxa at multiple levels to be significantly associated with sarcopenia (n = 4/6), muscle mass (n = 13/14), strength (n = 7/9), and physical performance (n = 3/3); however, directions of associations were heterogeneous and also conflicting for specific GM-taxa. Regarding β-diversity, studies found GM of persons with sarcopenia, low muscle mass, or low strength to cluster differently compared with persons with preserved muscle status. α-diversity was low in persons with sarcopenia or low muscle mass as compared with those with preserved muscle status, indicating low richness and diversity. In line with this, α-diversity was significantly and positively associated with muscle mass (n = 3/4) and muscle strength (n = 2/3). All reported results were significant (P < 0.05). Persons with sarcopenia and low muscle parameters have less rich and diverse GM and can be separated from persons with preserved muscle mass and function based on GM-composition. Sarcopenia and low muscle parameters are also associated with different GM-taxa at multiple levels, but results were heterogeneous and no causal conclusions could be made due to the cross-sectional design of the studies. This emphasizes the need for uniformly designed cross-sectional and longitudinal trials with appropriate GM confounder control in large samples of persons with sarcopenia and clearly defined core outcome sets in order to further explore changes in GM-taxa and to determine a sarcopenia-specific GM-signature.
Collapse
Affiliation(s)
- Laurence Lapauw
- Department of Public Health and Primary Care, Division of Gerontology and GeriatricsKU LeuvenLeuvenBelgium
| | - Aurélie Rutten
- Division of Gerontology and GeriatricsZuyderland Medisch CentrumSittardThe Netherlands
| | - Jolan Dupont
- Department of Public Health and Primary Care, Division of Gerontology and GeriatricsKU LeuvenLeuvenBelgium
- Division of Gerontology and GeriatricsUniversity Hospitals LeuvenLeuvenBelgium
| | - Nadjia Amini
- Department of Public Health and Primary Care, Division of Gerontology and GeriatricsKU LeuvenLeuvenBelgium
| | - Laura Vercauteren
- Department of Public Health and Primary Care, Division of Gerontology and GeriatricsKU LeuvenLeuvenBelgium
| | - Muriel Derrien
- Department of Microbiology, Immunology and Transplantation, Rega InstituteKU LeuvenLeuvenBelgium
- VIB Center for MicrobiologyLeuvenBelgium
| | - Jeroen Raes
- Department of Microbiology, Immunology and Transplantation, Rega InstituteKU LeuvenLeuvenBelgium
- VIB Center for MicrobiologyLeuvenBelgium
| | - Evelien Gielen
- Department of Public Health and Primary Care, Division of Gerontology and GeriatricsKU LeuvenLeuvenBelgium
- Division of Gerontology and GeriatricsZuyderland Medisch CentrumSittardThe Netherlands
| |
Collapse
|
2
|
Olbjørn C, Hagen M, Moen AEF, Havdal LB, Sommen SL, Berven LL, Thiis-Evensen E, Stiansen-Sonerud T, Selvakumar J, Wyller VBB. Longitudinal Fecal Microbiota Profiles in A Cohort of Non-Hospitalized Adolescents and Young Adults with COVID-19: Associations with SARS-CoV-2 Status and Long-Term Fatigue. Pathogens 2024; 13:953. [PMID: 39599506 PMCID: PMC11597601 DOI: 10.3390/pathogens13110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Adolescents most often experience mild acute COVID-19, but may still face fatigue and persistent symptoms such as post-COVID-19 condition (PCC) and post-infective fatigue syndrome (PIFS). We explored the fecal microbiota of SARS-CoV-2 positive and negative non-hospitalized adolescents and young adults (12-25 years of age) in the "Long-Term Effects of COVID-19 in Adolescents" (LoTECA) project, a longitudinal observational cohort study. With a targeted qPCR approach, the quantities of 100 fecal bacterial taxa were measured at baseline (early convalescent stage) in 145 SARS-CoV-2-positive and 32 SARS-CoV-2 negative participants and after six months in 107 of the SARS-CoV-2-positive and 19 of the SARS-CoV-2 negative participants. Results: Faecalibacterium prausnitzii M21.2 and Gemmiger formicilis (both p < 0.001) were enriched in the SARS-CoV-2-positive participants compared to negative controls at baseline. In SARS-CoV-2-positive participants, lower baseline abundance of Faecalibacterium prausnitzii M21/2 (p = 0.013) and higher abundance of Clostridium spiroforme (p = 0.006), Sutterella wadsworthensis (p < 0.001), and Streptococcus thermophilus (p = 0.039) were associated with six-month fatigue. Sutterella wadsworthensis and Streptococcus thermophilus enrichment was additionally associated with PCC in the SARS-CoV-2-positive group (p < 0.001 and 0.042 respectively). Conclusions: Adolescents and young adults with mild acute COVID-19 infection had increased fecal abundance of the beneficial Faecalibacterium prausnitzii M21/2 and Gemmiger formicilis compared to SARS-CoV-2 negative controls in the early convalescent stage. Additionally, the abundance of both known (Faecalibacterium prausnitzii, Streptococcus thermophilus) and new (Clostridium spiroforme, Sutterella wadsworthensis) bacteria were associated with persistent symptoms such as fatigue in the COVID-19 infected group, warranting further exploration of the role of these bacteria in COVID-19 disease and PCC pathophysiology.
Collapse
Affiliation(s)
- Christine Olbjørn
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, 1478 Lørenskog, Norway; (L.B.H.); (S.L.S.); (L.L.B.); (T.S.-S.); (J.S.); (V.B.B.W.)
| | - Milada Hagen
- Department of Nursing and Health Promotion, Oslo Metropolitan University, 0130 Oslo, Norway;
| | | | - Lise Beier Havdal
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, 1478 Lørenskog, Norway; (L.B.H.); (S.L.S.); (L.L.B.); (T.S.-S.); (J.S.); (V.B.B.W.)
| | - Silke Lauren Sommen
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, 1478 Lørenskog, Norway; (L.B.H.); (S.L.S.); (L.L.B.); (T.S.-S.); (J.S.); (V.B.B.W.)
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Lise Lund Berven
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, 1478 Lørenskog, Norway; (L.B.H.); (S.L.S.); (L.L.B.); (T.S.-S.); (J.S.); (V.B.B.W.)
- Department of Microbiology and Infection Control, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Espen Thiis-Evensen
- Department of Gastroenterology, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway;
| | - Tonje Stiansen-Sonerud
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, 1478 Lørenskog, Norway; (L.B.H.); (S.L.S.); (L.L.B.); (T.S.-S.); (J.S.); (V.B.B.W.)
- Department of Clinical Molecular Biology (EpiGen), University of Oslo, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Joel Selvakumar
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, 1478 Lørenskog, Norway; (L.B.H.); (S.L.S.); (L.L.B.); (T.S.-S.); (J.S.); (V.B.B.W.)
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Vegard Bruun Bratholm Wyller
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, 1478 Lørenskog, Norway; (L.B.H.); (S.L.S.); (L.L.B.); (T.S.-S.); (J.S.); (V.B.B.W.)
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| |
Collapse
|
3
|
Næss M, Kvaløy K, Sørgjerd EP, Sætermo KS, Norøy L, Røstad AH, Hammer N, Altø TG, Vikdal AJ, Hveem K. Data Resource Profile: The HUNT Biobank. Int J Epidemiol 2024; 53:dyae073. [PMID: 38836303 PMCID: PMC11150882 DOI: 10.1093/ije/dyae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/23/2024] [Indexed: 06/06/2024] Open
Affiliation(s)
- Marit Næss
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Kirsti Kvaløy
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
- Department of Community Medicine, Center for Sami Health Research, Arctic University of Norway, Tromso, Norway
| | - Elin P Sørgjerd
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Kristin S Sætermo
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Lise Norøy
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Ann Helen Røstad
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Nina Hammer
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Trine Govasli Altø
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Anne Jorunn Vikdal
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Kristian Hveem
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology), Trondheim, Norway
- Department of Research, St Olav’s Hospital, Trondheim, Norway
| |
Collapse
|
4
|
Grahnemo L, Nethander M, Coward E, Gabrielsen ME, Sree S, Billod JM, Sjögren K, Engstrand L, Dekkers KF, Fall T, Langhammer A, Hveem K, Ohlsson C. Identification of three bacterial species associated with increased appendicular lean mass: the HUNT study. Nat Commun 2023; 14:2250. [PMID: 37080991 PMCID: PMC10119287 DOI: 10.1038/s41467-023-37978-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Appendicular lean mass (ALM) associates with mobility and bone mineral density (BMD). While associations between gut microbiota composition and ALM have been reported, previous studies rely on relatively small sample sizes. Here, we determine the associations between prevalent gut microbes and ALM in large discovery and replication cohorts with information on relevant confounders within the population-based Norwegian HUNT cohort (n = 5196, including women and men). We show that the presence of three bacterial species - Coprococcus comes, Dorea longicatena, and Eubacterium ventriosum - are reproducibly associated with higher ALM. When combined into an anabolic species count, participants with all three anabolic species have 0.80 kg higher ALM than those without any. In an exploratory analysis, the anabolic species count is positively associated with femoral neck and total hip BMD. We conclude that the anabolic species count may be used as a marker of ALM and BMD. The therapeutic potential of these anabolic species to prevent sarcopenia and osteoporosis needs to be determined.
Collapse
Affiliation(s)
- Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Maria Nethander
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eivind Coward
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maiken Elvestad Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Satya Sree
- Bio-Me, Oslo Science Park, Gaustadalléen 21, N-0349, Oslo, Norway
| | - Jean-Marc Billod
- Bio-Me, Oslo Science Park, Gaustadalléen 21, N-0349, Oslo, Norway
| | - Klara Sjögren
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Karolinska Hospital, Biomedicum A8, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Koen F Dekkers
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Arnulf Langhammer
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden
| |
Collapse
|
5
|
Salazar N, Ponce-Alonso M, Garriga M, Sánchez-Carrillo S, Hernández-Barranco AM, Redruello B, Fernández M, Botella-Carretero JI, Vega-Piñero B, Galeano J, Zamora J, Ferrer M, de Los Reyes-Gavilán CG, Del Campo R. Fecal Metabolome and Bacterial Composition in Severe Obesity: Impact of Diet and Bariatric Surgery. Gut Microbes 2022; 14:2106102. [PMID: 35903014 PMCID: PMC9341356 DOI: 10.1080/19490976.2022.2106102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was to monitor the impact of a preoperative low-calorie diet and bariatric surgery on the bacterial gut microbiota composition and functionality in severe obesity and to compare sleeve gastrectomy (SG) versus Roux-en-Y gastric bypass (RYGB). The study also aimed to incorporate big data analysis for the omics results and machine learning by a Lasso-based analysis to detect the potential markers for excess weight loss. Forty patients who underwent bariatric surgery were recruited (14 underwent SG, and 26 underwent RYGB). Each participant contributed 4 fecal samples (baseline, post-diet, 1 month after surgery and 3 months after surgery). The bacterial composition was determined by 16S rDNA massive sequencing using MiSeq (Illumina). Metabolic signatures associated to fecal concentrations of short-chain fatty acids, amino acids, biogenic amines, gamma-aminobutyric acid and ammonium were determined by gas and liquid chromatography. Orange 3 software was employed to correlate the variables, and a Lasso analysis was employed to predict the weight loss at the baseline samples. A correlation between Bacillota (formerly Firmicutes) abundance and excess weight was observed only for the highest body mass indexes. The low-calorie diet had little impact on composition and targeted metabolic activity. RYGB had a deeper impact on bacterial composition and putrefactive metabolism than SG, although the excess weight loss was comparable in the two groups. Significantly higher ammonium concentrations were detected in the feces of the RYGB group. We detected individual signatures of composition and functionality, rather than a gut microbiota characteristic of severe obesity, with opposing tendencies for almost all measured variables in the two surgical approaches. The gut microbiota of the baseline samples was not useful for predicting excess weight loss after the bariatric process.
Collapse
Affiliation(s)
- Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa & Diet, Microbiota and Health Group. Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Manuel Ponce-Alonso
- Department of Microbiology, Servicio de Microbiología. Hospital Universitario Ramón y Cajal, & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), & CIBERINFECT, Madrid, Spain
| | - María Garriga
- Servicio de Endocrinología y Nutrición, Hospital Universitario Ramón y Cajal, & Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain
| | | | | | - Begoña Redruello
- Servicios Científico-Técnicos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| | - María Fernández
- Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa & Molecular Microbiology Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - José Ignacio Botella-Carretero
- Servicio de Endocrinología y Nutrición, Hospital Universitario Ramón y Cajal, & Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain,Universidad de Alcalá, Madrid, Spain
| | - Belén Vega-Piñero
- Servicio de Endocrinología y Nutrición, Hospital Universitario Ramón y Cajal, & Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain
| | - Javier Galeano
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, Spain
| | - Javier Zamora
- Unidad de Bioestadística Clínica, Hospital Universitario Ramón y Cajal, & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), & CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain & Women’s Health Research Unit. Queen Mary University of London, London, UK
| | - Manuel Ferrer
- Instituto de Catálisis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa & Diet, Microbiota and Health Group. Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain,CONTACT Clara G. de Los Reyes-Gavilán Department of Microbiology and Biochemistry of Dairy Products Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa & Diet, Microbiota and Health Group. Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Rosa Del Campo
- Department of Microbiology, Servicio de Microbiología. Hospital Universitario Ramón y Cajal, & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), & CIBERINFECT, Madrid, Spain,Universidad Alfonso X El Sabio, Villanueva de la Cañada, Spain,Rosa del Campo Department of Microbiology, Hospital Ramon y Cajal, Madrid, Spain
| |
Collapse
|
6
|
Targeted Analysis of the Gut Microbiome for Diagnosis, Prognosis and Treatment Individualization in Pediatric Inflammatory Bowel Disease. Microorganisms 2022; 10:microorganisms10071273. [PMID: 35888992 PMCID: PMC9319120 DOI: 10.3390/microorganisms10071273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 12/26/2022] Open
Abstract
We explored the fecal microbiota in pediatric patients <18 years of age with treatment-naïve IBD (80 Crohn’s disease (CD), 27 ulcerative colitis (UC)), in 50 non-IBD patients with gastrointestinal symptoms without inflammation and in 75 healthy children. Using a targeted qPCR approach, the quantities of more than 100 different bacterial species were measured. Results: The bacterial abundance was statistically significantly reduced in the IBD and non-IBD patients compared to the healthy children for several beneficial species. The CD patients had a lower abundance of Bifidobacterium species compared to the UC patients, and the IBD patients in need of biologic therapy had a lower abundance of butyrate producing bacteria. Based on the abundance of bacterial species at diagnosis, we constructed Diagnostic, Phenotype and Prognostic Indexes. Patients with a high Diagnostic Index had 2.5 times higher odds for having IBD than those with a lower index. The CD patients had a higher Phenotype Index than the UC patients. Patients with a high Prognostic Index had 2.1 higher odds for needing biologic therapy compared to those with a lower index. Conclusions: The fecal abundance of bacterial species can aid in diagnosing IBD, in distinguishing CD from UC and in identifying children with IBD in need of biologic therapy.
Collapse
|
7
|
Parkar SG, Gopal PK. Gut Microbiota and Metabolism in Different Stages of Life and Health. Microorganisms 2022; 10:microorganisms10020474. [PMID: 35208928 PMCID: PMC8876188 DOI: 10.3390/microorganisms10020474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Affiliation(s)
| | - Pramod K. Gopal
- New Zealand Institute for Plant and Food Research, Palmerston North 4442, New Zealand;
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|